A method based on a novel ultrasound technique and inverse heat transfer analysis was developed to study the transient thermal contact resistance (TCR) at the early stage of a rapid contact solidification process. This promising technique is nonintrusive and, therefore, provides no distortion to the contact surface as well as the heat transfer process. The effects of impact velocity and initial molten metal temperature on TCR were investigated in detail. An empirical equation that correlates the variable TCR with the initial and interfacial conditions was introduced utilizing the experimental data.