The article proposes a process for obtaining semi-finished products in the form of pipes made of copper alloys for electrical applications using the screw rolling method. The paper presents the results of experimental piercing and rolling of pipe samples made of Cu–0.75Cr copper alloy billets with a diameter of 45 mm. The 43.5×10.0 mm samples obtained after piercing using a two-roll screw rolling mill had exact geometrical dimensions: outer diameter deviation at the front end was up to 1 %, at the back end – up to 2.4 %; relative variation in wall thickness at the front end was 0.3÷0.5 %, at the rear end – 0.5÷1.0 %. Then pierced pipe samples were rolled using a three-roll radial-shear rolling (RSR) mini mill with a different total degree of reduction – samples were obtained with an outer diameter of 30, 25 and 18 mm. The reduction process was analyzed from the point of view of internal hole stability and deformation. In case of 30 % relative reduction of the outer diameter, rolling without a mandrel is accompanied by wall thickening. In this case, inner diameter deviations are within acceptable limits. The experiments on obtaining samples from the Cu–0.75Cr alloy by screw piercing and reduction in the RSR mill show that this scheme can be implemented in principle in industry. At the same time it is necessary to define more exactly deformation parameters (degree of deformation, choice of reduction scheme) to obtain a quality product. Various options for heat treatment (HT) of the obtained pipe samples and the effect of the HT method on electrical conductivity and hardness are considered. Samples after piercing had a conductivity of 59.3 % IACS. The maximum electrical conductivity of 76.7 % IACS was obtained on samples after quenching from a temperature of 1020 °C and aging at 450 °C for 3 h. The results of the work show the fundamental possibility of obtaining semi-finished products from copper alloys for electrical purposes using the screw rolling method.