The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C−F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo‐ and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge‐dipole, dipole‐dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.