MicroRNAs act as the cardinal post-transcriptional monitors of gene regulatory networks sculpturing the developmental plasticity and stress responses in plants. Single miRNA target several genes and how the transcriptional regulation of miRNA impacts its pool of targets in different tissues and stress conditions is still elusive. The present study investigated the highly conserved and evolving MIR408 family comprehensively by redefining its evolutionary conservation and diversification in plants followed by detailed functional analysis in rice. MIR408 family comprises three dominant mature forms (21 nt) including a distinct monocot variant. Plant MIR408 family can be divided into six groups. miR408 majorly cleave genes belonging to blue copper protein in addition to several other speciesspecific targets in plants. Screening of 4726 rice accessions identified 22 sequence variants in 1 Kb upstream (15) and MIR408 region leading to the identification of 8 haplotypes (3: Japonica-specific and 5: Indica-specific). miR408-3p follows flag leaf preferential and drought upregulated expression profile in flag leaf and roots of N22 which seems to be regulated by differential fraction of mCs in the precursor region. The active pool of miR408 regulated targets under control and drought conditions is impacted by the tissue type.Comparative expression analysis of miR408/target module under different sets of conditions