MicroRNAs act as the cardinal post-transcriptional monitors of gene regulatory networks sculpturing the developmental plasticity and stress responses in plants. Single miRNA target several genes and how the transcriptional regulation of miRNA impacts its pool of targets in different tissues and stress conditions is still elusive. The present study investigated the highly conserved and evolving MIR408 family comprehensively by redefining its evolutionary conservation and diversification in plants followed by detailed functional analysis in rice. MIR408 family comprises three dominant mature forms (21 nt) including a distinct monocot variant. Plant MIR408 family can be divided into six groups. miR408 majorly cleave genes belonging to blue copper protein in addition to several other species-specific targets in plants. Screening of 4726 rice accessions identified 22 sequence variants in 1 Kb upstream (15) and MIR408 region leading to the identification of 8 haplotypes (3: Japonica-specific and 5: Indica-specific). miR408-3p follows flag leaf preferential and drought upregulated expression profile in flag leaf and roots of N22 which seems to be regulated by differential fraction of mCs in the precursor region. The active pool of miR408 regulated targets under control and drought conditions is impacted by the tissue type. Comparative expression analysis of miR408/target module under different sets of conditions features 83 targets exhibiting antagonistic expression in rice. Twelve high confidence targets including 4 plantacyanins (OsUCL6, 7, 9 and 30), pirin, OsLPR1, OsCHUP1, OsDOF12, OsBGLU1, glycine rich cell wall, deoxyuridine 5-triphosphate nucleotidohydrolaseand OsERF7 with antagonistic expression under most conditions. Further, over-expression of osa-MIR408 in drought sensitive rice cultivar leads to the massive enhancement of vegetative growth in rice with improved ETR and Y(II) and enhanced the dehydration stress tolerance at seedling stage.
MicroRNAs act as the cardinal post-transcriptional monitors of gene regulatory networks sculpturing the developmental plasticity and stress responses in plants. Single miRNA target several genes and how the transcriptional regulation of miRNA impacts its pool of targets in different tissues and stress conditions is still elusive. The present study investigated the highly conserved and evolving MIR408 family comprehensively by redefining its evolutionary conservation and diversification in plants followed by detailed functional analysis in rice. MIR408 family comprises three dominant mature forms (21 nt) including a distinct monocot variant. Plant MIR408 family can be divided into six groups. miR408 majorly cleave genes belonging to blue copper protein in addition to several other speciesspecific targets in plants. Screening of 4726 rice accessions identified 22 sequence variants in 1 Kb upstream (15) and MIR408 region leading to the identification of 8 haplotypes (3: Japonica-specific and 5: Indica-specific). miR408-3p follows flag leaf preferential and drought upregulated expression profile in flag leaf and roots of N22 which seems to be regulated by differential fraction of mCs in the precursor region. The active pool of miR408 regulated targets under control and drought conditions is impacted by the tissue type.Comparative expression analysis of miR408/target module under different sets of conditions
miRNA biogenesis process is an intricate and complex event consisting of many proteins working in a highly coordinated fashion. Most of these proteins have been studied in Arabidopsis; however, their orthologs and functions have not been explored in other plant species. In the present study, we have manually curated all the experimentally verified information present in the literature regarding these proteins and found a total of 98 genes involved in miRNA biogenesis in Arabidopsis. The conservation pattern of these proteins was identified in other plant species ranging from dicots to lower organisms, and we found that a major proportion of proteins involved in the pri-miRNA processing are conserved. However, nearly 20% of the genes, mostly involved in either transcription or functioning of the miRNAs, were absent in the lower organisms. Further, we manually curated a regulatory network of the core components of the biogenesis process and found that nearly half (46%) of the proteins interact with them, indicating that the processing step is perhaps the most under surveillance/regulation. We have subsequently attempted to characterize the orthologs identified in Oryza sativa, on the basis of transcriptome and epigenetic modifications under field drought conditions in order to assess the impact of drought on the process. We found several participating genes to be differentially expressed and/or epigenetically methylated under drought, although the core components like DCL1, SE, and HYL1 remain unaffected by the stress itself. The study enhances our present understanding of the biogenesis process and its regulation.
Background Data visualisation technique has greatly improved as technology has advanced. While representing the data through graph, it has made the underlying data structure become more transparent and interpretable. However, the informational scope of freely available generic visualisation tools is still limited since they only support descriptive statistics as well as no metainformation can be incorporated. Additionally, there is a need to promote the use of accepted scientific standards when performing and reporting statistical analysis. Result PlotS is a visualization centric web-based application that allows the integration of statistical analysis into a single workflow. The current version has eight types of graphs (bar, box, density, frequency polygon, histogram, line, scatter and violin plot) and four statistical methods (T-test, ANOVA, Wilcoxon test and Krushkal-Wallis test). It is an interactive application that provide many useful customization options for data analysis-focused visualization. It support incorporation of metainformation in the graph and multivariate data analysis by adding layer with or without secondary y-axis, side graphs, inset graph or through faceting. It can handle variety of data formats with or without replicates and inferential statistical analysis can be incorporated in the graph. Necessary statistical results are explicitly displayed for inferences and reporting. Conclusion PlotS is freely available at https://plots-application.shinyapps.io/plots/ . We hope it will be a useful tool for data visualisation and analysis that will also encourage the widespread use of proper statistical methods in research and teaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.