Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Download date: 12-05-2018Nanoscale temperature sensing using the Seebeck effect We experimentally study the effect of Joule heating on the electron temperature in metallic nanoscale devices and compare the results with a diffusive 3D finite element model. The temperature is probed using four thermocouples located at different distances from the heater. A good quantitative agreement, within 30%, between the experimental data and the modeling is obtained. Since we observe a strong thickness dependence of the electrical conductivity of our metals, we find that the Joule heating in nanoscale devices is often incorrectly calculated if bulk conductivities are used. Furthermore, Peltier heating=cooling is investigated and the combination with Seebeck temperature measurements provides us with a method to determine the Seebeck coefficient of a material.