Field-effect transistors (GFETs) were fabricated on mechanically flexible substrates using chemical vapor deposition grown graphene. High current density (nearly 200 μA μm(-1)) with saturation, almost perfect ambipolar electron-hole behavior, high transconductance (120 μS μm(-1)) and good stability over 381 days were obtained. The average carrier mobility for holes (electrons) is 13,540 cm(2) V(-1) s(-1) (12,300 cm(2) V(-1) s(-1)) with the highest value over 24,000 cm(2) V(-1) s(-1) (20,000 cm(2) V(-1) s(-1)) obtained in flexible GFETs. Ambipolar radio-frequency circuits, frequency doubler, were constructed based on the high performed flexible GFET, which show record high output power spectra purity (∼97%) and high conversion gain of -13.6 dB. Bending measurements show the flexible GFETs are able to work under modest strain. These results show that flexible GFETs are a very promising option for future flexible radio-frequency electronics.
Submicrometer dual-stripe temperature sensors made from a single piece of metal thin film (e.g., Pd) are developed. With the narrowest sensor being 900 nm in width, they show sensitivity of 1-2 μV/K for the full range of 10-300 K. The results confirm the size effect in Seebeck coefficient previously observed in microstripe sensors of the same device configuration.
The use of active colloids for cargo transport offers unique potential for applications ranging from targeted drug delivery to lab-on-a-chip systems. Previously, Janus particles (JPs), acting as mobile microelectrodes have been shown to transport cargo which is trapped by a dielectrophoretic mechanism [Boymelgreen et al. (2018)]. Herein, we aim to characterize the cargo loading properties of mobile Janus carriers, across a broad range of frequencies and voltages. In expanding the frequency range of the carrier, we are able to compare the influence of different modes of carrier transport on the loading capacity as well as highlight the differences between cargo trapped by positive and negative dielectrophoresis. Specifically it is shown that cargo trapping results in a reduction in carrier velocities with this effect more pronounced at low frequencies where cargo is trapped close to the substrate. Interestingly, we observe the existence of a maximum cargo loading capacity which decreases at large voltages suggesting a strong interplay between trapping and hydrodynamic shear. Finally, we demonstrate that control of the frequency can enable different assemblies of binary colloidal solutions on the JP. The resultant findings enable the optimization of electrokinetic cargo transport and its selective application to a broad range of targets.
Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.