In the present work we analyze the effect of topological defects at different temperatures in a mesoscopic superconducting sample in the presence of an applied magnetic field H. The time-dependent Ginzburg-Landau equations are solved with the method of link variables. We study the magnetization curves M(H), number of vortices N(H) and Gibbs G(H) free energy of the sample as a applied magnetic field function. We found that the random distribution of the anchor centers for the temperatures used does not cause strong anchor centers for the vortices, so the configuration of fluxoids in the material is symmetrical due to the well-known Beam-Livingston energy barrier.