ABSTRACT:We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton− exciton annihilation signatures under weak excitation flux. Fitting to a onedimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport. KEYWORDS: J-aggregate, molecular aggregate, exciton, exciton diffusion, coherent exciton, exciton delocalization E xcitons are bound electron−hole pairs generated upon absorption of a photon or through charge carrier injection. Photosynthetic organisms and organic electronics make use of ordered molecular aggregates as excitonic antennas, with energy transport out-competing radiative and nonradiative decay channels leading to near-unity internal quantum efficiencies. 1,2 Like electronic conduction, molecular exciton conduction falls largely in two regimes: hopping and delocalization. In the hopping regime, interaction with the environment (the reorganization energy) exceeds the dipole−dipole coupling (λ reorg > J), leading to Forster resonance dominated transport. In the delocalized regime, dipole−dipole coupling exceeds the reorganization energy leading to Redfield transport. 3,4 Efficient conduction of spin-singlet excitons requires a balance of these two regimes, with both coherent quantum delocalization and incoherent resonance energy transfer playing a role in natural and artificial light-harvesting systems. 3,5−7 However, extracting principles of design from disordered complex biological and polymer systems is a significant challenge. 8 This study probes singlet exciton transport in self-assembled light harvesting nanotubes (LHNs). LHNs are quasi one-dimensional Jaggregates consisting of ordered amphiphillic cyanine dyes that form extended transition dipoles with concentrated oscillator strength in a lower-energy, highly emissive state. 9 LHNs show remarkably high overall coupling, negligible reorganization energies, and high structural uniformity resulting in large delocalization lengths. LHNs are an excellent model material for exploring the relationship between quantum delocalization and energy transport in a system where λ reorg ≪ J (coherent regime). 10−12 However, spectroscopic studies of LHNs have been hampered by difficulties in sample preparation 13 and photoinstability. 14 As a result, studies of exciton transport in LHNs have yielded highly variable results, 15−17 with estimates of transport ranging from 30 to 300 nm ...