The actinide endohedral fullerene Th@C76 was successfully prepared in a very recent experiment (Wang et al., J. Am. Chem. Soc. 2017, 139, 5110) yet without any structural information. In this work, density functional theory calculations revealed that this novel molecule bears a Td(19151)‐C76 cage obeying the isolated pentagon rule. The internal Th atom is off‐centered and resides under a sumanene‐type hexagonal ring, formally donating 4e to the carbon cage. The metal position was rationalized by the structure and charge distribution of the negatively charged cage. Interestingly, an octahedron‐like dynamic trajectory of metal inside the C76 cage at high temperature was found based on the cage symmetry and located transition state structures. Furthermore, the infrared, NMR, and UV/vis spectra of Th@C76 were simulated to assist future experimental characterization.