Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the paper, we study and compare relative $(k,n)$ Valiron defect with the relative Nevanlinna defect for meromorphic function where $k$ and $n$ are both non negative integers on annuli. The results we proved are as follows \\1. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ and $\sum\nolimits_{a\not=\infty}^{}\delta_{0}(a,f)+\delta_{0}(\infty,f)=2.$Then\centerline{$\displaystyle\lim\limits_{R\rightarrow\infty}^{}\frac{T_{0}(R,f^{(k)})}{T_{0}(R,f)}=(1+k)-k\delta_{0}(\infty,f).$}\noi 2. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$ \smallskip\centerline{$\displaystyle 3 _{R}\delta_{0(n)}^{(0)}(a,f)+2 _{R}\delta_{0(n)}^{(0)}(b,f)+3 _{R}\delta_{0(n)}^{(0)}(c,f)+5 _{R}\Delta_{0(n)}^{(k)}(\infty ,f)\leq 5 _{R}\Delta_{0(n)}^{(0)}(\infty,f)+5 _{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 3. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\delta_{0(n)}^{(0)}(c,f)\leq _{R}\Delta_{0(n)}^{(0)}(\infty,f)+2_{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 4. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$ and $d$ are two distinct complex numbers, then for any two positive integer $k$ and $p$ with $0\leq k\leq p$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(d,f)+_{R}\Delta_{0(n)}^{(p)}(\infty,f)+_{R}\delta_{0(n)}^{(k)}(a,f)\leq _{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\Delta_{0(n)}^{(p)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(0,f),$} \noi where $n$ is any positive integer.\\5.Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ . Then for any two positive integers $k$ and $n$,\smallskip\centerline{$\displaystyle_{R}\Delta_{0(n)}^{(0)}(\infty,f)+_{R}\Delta_{0(n)}^{(k)}(0,f) \geq _{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\delta_{0(n)}^{(0)}(a,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f),$}\noi where $a$ is any non zero complex number.
In the paper, we study and compare relative $(k,n)$ Valiron defect with the relative Nevanlinna defect for meromorphic function where $k$ and $n$ are both non negative integers on annuli. The results we proved are as follows \\1. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ and $\sum\nolimits_{a\not=\infty}^{}\delta_{0}(a,f)+\delta_{0}(\infty,f)=2.$Then\centerline{$\displaystyle\lim\limits_{R\rightarrow\infty}^{}\frac{T_{0}(R,f^{(k)})}{T_{0}(R,f)}=(1+k)-k\delta_{0}(\infty,f).$}\noi 2. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$ \smallskip\centerline{$\displaystyle 3 _{R}\delta_{0(n)}^{(0)}(a,f)+2 _{R}\delta_{0(n)}^{(0)}(b,f)+3 _{R}\delta_{0(n)}^{(0)}(c,f)+5 _{R}\Delta_{0(n)}^{(k)}(\infty ,f)\leq 5 _{R}\Delta_{0(n)}^{(0)}(\infty,f)+5 _{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 3. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\delta_{0(n)}^{(0)}(c,f)\leq _{R}\Delta_{0(n)}^{(0)}(\infty,f)+2_{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 4. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$ and $d$ are two distinct complex numbers, then for any two positive integer $k$ and $p$ with $0\leq k\leq p$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(d,f)+_{R}\Delta_{0(n)}^{(p)}(\infty,f)+_{R}\delta_{0(n)}^{(k)}(a,f)\leq _{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\Delta_{0(n)}^{(p)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(0,f),$} \noi where $n$ is any positive integer.\\5.Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ . Then for any two positive integers $k$ and $n$,\smallskip\centerline{$\displaystyle_{R}\Delta_{0(n)}^{(0)}(\infty,f)+_{R}\Delta_{0(n)}^{(k)}(0,f) \geq _{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\delta_{0(n)}^{(0)}(a,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f),$}\noi where $a$ is any non zero complex number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.