2014
DOI: 10.1093/bioinformatics/btu332
|View full text |Cite
|
Sign up to set email alerts
|

Universal dynamical properties preclude standard clustering in a large class of biochemical data

Abstract: Supplementary data are available at Bioinformatics online.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0
2

Year Published

2014
2014
2021
2021

Publication Types

Select...
5
2

Relationship

3
4

Authors

Journals

citations
Cited by 16 publications
(14 citation statements)
references
References 58 publications
0
12
0
2
Order By: Relevance
“…The clearer clusters of early criticality appear to be more suited for a simple "state-coding", where an avalanche cluster could be seen as a read-out codeword by an observer process. A similar coding strategy has been identified in weakly coupled periodic systems in terms of Arnold tongues 53 , supporting efficient, Huffman-like input coding 49,54 . The larger space spanned by the avalanche vectors at the late criticality, in contrast, is more advantageous for functions requiring more variable network responses, similar to earlier formulated optimality arguments regarding dynamic range, stimulus representation and information capacity at the avalanche criticality regime with τ % 1:5 21 .…”
Section: Discussionmentioning
confidence: 53%
See 1 more Smart Citation
“…The clearer clusters of early criticality appear to be more suited for a simple "state-coding", where an avalanche cluster could be seen as a read-out codeword by an observer process. A similar coding strategy has been identified in weakly coupled periodic systems in terms of Arnold tongues 53 , supporting efficient, Huffman-like input coding 49,54 . The larger space spanned by the avalanche vectors at the late criticality, in contrast, is more advantageous for functions requiring more variable network responses, similar to earlier formulated optimality arguments regarding dynamic range, stimulus representation and information capacity at the avalanche criticality regime with τ % 1:5 21 .…”
Section: Discussionmentioning
confidence: 53%
“…6b), where the set of all avalanche vectors spans a 59-dimensional "feature space". To see how the avalanches are organized in this space, we used an unsupervised Hebbian learning clustering (HLC) developed by us [48][49][50][51] . This approach finds clusters of arbitrary shapes, without prior knowledge of the number of clusters or requiring a data dimensionality reduction step that generally distorts and biases the distances between data points 52 .…”
Section: Discussionmentioning
confidence: 99%
“…График (16) является границей, по которой проходят ка-сательные бифуркации. При переходе через нее возникает еще один устойчивый 2-цикл уравнения (3), область устойчивости которого формируется кривыми (14) и (16). Таким об-разом, линия (16) отделяет область «единственности» устойчивого 2-цикла от области муль-тистабильности, в которой могут сосуществовать два разных устойчивых 2-цикла.…”
Section: модель рикера с периодическим мальтузианским параметромunclassified
“…Затем они утолщаются и заканчиваются резким сужением до формы «усов», расходящихся в разные стороны. Благодаря своим формам такие области существования устойчивых циклов, расположенные в внутри области хаоса, в литературе именуются «креветкоподобными» (shrimp-like) [15,16]. это означает, что при периодических изменениях мальтузианского параметра с большой амплитудой (ρ = 10 при α = 10.5) система может демонстрировать разные приращения переменной за одну итерацию практически из одной и той же области малых значений переменной x. У 8-и 10-циклов уравнения (3) (см.…”
Section: к в шлюфман г п неверова е я фрисманunclassified
“…Indeed, for mammalian cochleae, the correct sensitivity profile can only be obtained for coupled Hopf oscillators by tuning away from the critical bifurcation point (see e.g. [8] for a single element, and [9] for the networked context). The relationship between power law observations in biological networks and their functional output is not clear.…”
Section: Introductionmentioning
confidence: 99%