In recent years, spiking neural networks (SNNs) have attracted increasingly more researchers to study by virtue of its bio-interpretability and low-power computing. The SNN simulator is an essential tool to accomplish image classification, recognition, speech recognition, and other tasks using SNN. However, most of the existing simulators for spike neural networks are clock-driven, which has two main problems. First, the calculation result is affected by time slice, which obviously shows that when the calculation accuracy is low, the calculation speed is fast, but when the calculation accuracy is high, the calculation speed is unacceptable. The other is the failure of lateral inhibition, which severely affects SNN learning. In order to solve these problems, an event-driven high accurate simulator named EDHA (Event-Driven High Accuracy) for spike neural networks is proposed in this paper. EDHA takes full advantage of the event-driven characteristics of SNN and only calculates when a spike is generated, which is independent of the time slice. Compared with previous SNN simulators, EDHA is completely event-driven, which reduces a large amount of calculations and achieves higher computational accuracy. The calculation speed of EDHA in the MNIST classification task is more than 10 times faster than that of mainstream clock-driven simulators. By optimizing the spike encoding method, the former can even achieve more than 100 times faster than the latter. Due to the cross-platform characteristics of Java, EDHA can run on x86, amd64, ARM, and other platforms that support Java.