The KITSUNE satellite is a 6-unit CubeSat platform with the main mission of 5-m-class Earth observation in low Earth orbit (LEO), and the payload is developed with a 31.4 MP commercial off-the-shelf sensor, customized optics, and a camera controller board. Even though the payload is designed for Earth observation and to capture man-made patterns on the ground as the main mission, a secondary mission is planned for the classification of wildfire images by the convolution neural network (CNN) approach. Therefore, KITSUNE will be the first CubeSat to employ CNN to classify wildfire images in LEO. In this study, a deep-learning approach is utilized onboard the satellite in order to reduce the downlink data by pre-processing instead of the traditional method of performing the image processing at the ground station. The pre-trained CNN models generated in Colab are saved in RPi CM3+, in which, an uplink command will execute the image classification algorithm and append the results on the captured image data. The on-ground testing indicated that it could achieve an overall accuracy of 98% and an F1 score of a 97% success rate in classifying the wildfire events running on the satellite system using the MiniVGGNet network. Meanwhile, the LeNet and ShallowNet models were also compared and implemented on the CubeSat with 95% and 92% F1 scores, respectively. Overall, this study demonstrated the capability of small satellites to perform CNN onboard in orbit. Finally, the KITSUNE satellite is deployed from ISS on March 2022.
Developing star trackers quickly is non-trivial. Achieving reproducible results and comparing different algorithms are also open problems. In this sense, this work proposes the use of synthetic star images (a simulated sky), allied with the standardized structure of the Universal Verification Methodology as the base of a design approach. The aim is to organize the project, speed up the development time by providing a standard verification methodology. Future rework is reduced through two methods: a verification platform that us shared under a free software licence; and the layout of Universal Verification Methodology enforces reusability of code through an object-oriented approach. We propose a black-box structure for the verification platform with standard interfaces, and provide examples showing how this approach can be applied to the development of a star tracker for small satellites, targeting a system-on-a-chip design. The same test benches were applied to both early conceptual software-only implementations, and later optimized software-hardware hybrid systems, in a hardware-in-the-loop configuration. This test bench reuse strategy was interesting also to show the regression test capability of the developed platform. Furthermore, the simulator was used to inject specific noise, in order to evaluate the system under some real-world conditions.
The execution of centroid extraction algorithms using a microprocessor consumes considerable resources when compared to the other steps involved in star trackers. This paper presents a method to identify star centroids in star trackers by pre-processing the pixels using a field-programmable gate array (FPGA) directly in the stream transmitted by an image sensor. The dedicated hardware filters the star pixels and transmits them to a processor, which computes the centroids of the respective image using an infinite impulse response filter. Thus, there is a substantial decrease in memory consumption and a reduction of the processor usage during the attitude determination computation, making the process more attractive for small satellites. A hardware-inthe-loop simulation is presented to test the performance of the system. It was possible to achieve a subpixel precision in the centroid coordinates' estimation, and also lower execution times in comparison with methods based on the processing of whole images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.