Cocrystal
engineering is gaining interest across various disciplines
since it can effectively tune the properties of solid substances via
noncovalent synthesis by introducing new components into the lattice.
Mechanochemistry is without a doubt the most valuable tool for the
research of cocrystals, which combines the pursuit of efficient and
sustainable process pathways with the exploration of supramolecular
synthons that cannot be discovered using solution methods. In this
review, concerning the significance of the mechanochemical synthesis
of cocrystals, we begin by outlining the strategies for mechanochemical
preparation of cocrystals. We then elaborate on the theoretical mechanisms
of the mechanochemically induced formation of cocrystals and their
polymorphs. On this foundation, several cross-fields in which mechanochemistry
enhances the application value of cocrystal engineering are shown
to overcome existing limitations, which are difficult or impossible
to access using conventional solution methods. More importantly, we
demonstrate that the introduction of new methods, such as cultivating
single crystals from melt microdroplets, and new techniques, such
as microelectron diffraction (Micro-ED), has harmoniously united the
fields of cocrystal engineering and mechanochemistry. Finally, a brief
conclusion and outlook are presented, including current challenges
and future opportunities for the cooperation of mechanochemistry and
cocrystal engineering.