Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical safety assessment workflow is the availability of high quality data. This paper describes an ADMET structure-activity relationship database, abbreviated as admetSAR. It is an open source, text and structure searchable, and continually updated database that collects, curates, and manages available ADMET-associated properties data from the published literature. In admetSAR, over 210,000 ADMET annotated data points for more than 96,000 unique compounds with 45 kinds of ADMET-associated properties, proteins, species, or organisms have been carefully curated from a large number of diverse literatures. The database provides a user-friendly interface to query a specific chemical profile, using either CAS registry number, common name, or structure similarity. In addition, the database includes 22 qualitative classification and 5 quantitative regression models with highly predictive accuracy, allowing to estimate ecological/mammalian ADMET properties for novel chemicals. AdmetSAR is accessible free of charge at http://www.admetexp.org.
Computational prediction of drug-target interactions (DTIs) and drug repositioning provides a low-cost and high-efficiency approach for drug discovery and development. The traditional social network-derived methods based on the naïve DTI topology information cannot predict potential targets for new chemical entities or failed drugs in clinical trials. There are currently millions of commercially available molecules with biologically relevant representations in chemical databases. It is urgent to develop novel computational approaches to predict targets for new chemical entities and failed drugs on a large scale. In this study, we developed a useful tool, namely substructure-drug-target network-based inference (SDTNBI), to prioritize potential targets for old drugs, failed drugs and new chemical entities. SDTNBI incorporates network and chemoinformatics to bridge the gap between new chemical entities and known DTI network. High performance was yielded in 10-fold and leave-one-out cross validations using four benchmark data sets, covering G protein-coupled receptors, kinases, ion channels and nuclear receptors. Furthermore, the highest areas under the receiver operating characteristic curve were 0.797 and 0.863 for two external validation sets, respectively. Finally, we identified thousands of new potential DTIs via implementing SDTNBI on a global network. As a proof-of-principle, we showcased the use of SDTNBI to identify novel anticancer indications for nonsteroidal anti-inflammatory drugs by inhibiting AKR1C3, CA9 or CA12. In summary, SDTNBI is a powerful network-based approach that predicts potential targets for new chemical entities on a large scale and will provide a new tool for DTI prediction and drug repositioning. The program and predicted DTIs are available on request.
The blood-brain barrier (BBB) as a part of absorption protects the central nervous system by separating the brain tissue from the bloodstream. In recent years, BBB permeability has become a critical issue in chemical ADMET prediction, but almost all models were built using imbalanced data sets, which caused a high false-positive rate. Therefore, we tried to solve the problem of biased data sets and built a reliable classification model with 2358 compounds. Machine learning and resampling methods were used simultaneously for the refinement of models with both 2 D molecular descriptors and molecular fingerprints to represent the chemicals. Through a series of evaluation, we realized that resampling methods such as Synthetic Minority Oversampling Technique (SMOTE) and SMOTE+edited nearest neighbor could effectively solve the problem of imbalanced data sets and that MACCS fingerprint combined with support vector machine performed the best. After the final construction of a consensus model, the overall accuracy rate was increased to 0.966 for the final external data set. Also, the accuracy rate of the model for the test set was 0.919, with an excellent balanced capacity of 0.925 (sensitivity) to predict BBB-positive compounds and of 0.899 (specificity) to predict BBB-negative compounds. Compared with other BBB classification models, our models reduced the rate of false positives and were more robust in prediction of BBB-positive as well as BBB-negative compounds, which would be quite helpful in early drug discovery.
Deciphering chemical mechanism of action (MoA) enables the development of novel therapeutics (e.g. drug repositioning) and evaluation of drug side effects. Development of novel computational methods for chemical MoA assessment under a systems pharmacology framework would accelerate drug discovery and development with greater efficiency and low cost. EXPERIMENTAL APPROACHIn this study, we proposed an improved network-based inference method, balanced substructure-drug-target network-based inference (bSDTNBI), to predict MoA for old drugs, clinically failed drugs and new chemical entities. Specifically, three parameters were introduced into network-based resource diffusion processes to adjust the initial resource allocation of different node types, the weighted values of different edge types and the influence of hub nodes. The performance of the method was systematically validated by benchmark datasets and bioassays. KEY RESULTSHigh performance was yielded for bSDTNBI in both 10-fold and leave-one-out cross validations. A global drug-target network was built to explore MoA of anticancer drugs and repurpose old drugs for 15 cancer types/subtypes. In a case study, 27 predicted candidates among 56 commercially available compounds were experimentally validated to have binding affinities on oestrogen receptor α with IC 50 or EC 50 values ≤10 μM. Furthermore, two dual ligands with both agonistic and antagonistic activities ≤1 μM would provide potential lead compounds for the development of novel targeted therapy in breast cancer or osteoporosis. CONCLUSION AND IMPLICATIONSIn summary, bSDTNBI would provide a powerful tool for the MoA assessment on both old drugs and novel compounds in drug discovery and development.Abbreviations bSDTNBI, balanced substructure-drug-target network-based inference; DTI, drug-target interaction; e P , precision enhancement; e R , recall enhancement; ERα, oestrogen receptor α; E2, estradiol; MoA, mechanism of action; NBI, network-based inference; P, precision; R, recall; ROC, receiver operating characteristic
Chemical acute oral toxicity is an important end point in drug design and environmental risk assessment. However, it is difficult to determine by experiments, and in silico methods are hence developed as an alternative. In this study, a comprehensive data set containing 12, 204 diverse compounds with median lethal dose (LD₅₀) was compiled. These chemicals were classified into four categories, namely categories I, II, III and IV, based on the criterion of the U.S. Environmental Protection Agency (EPA). Then several multiclassification models were developed using five machine learning methods, including support vector machine (SVM), C4.5 decision tree (C4.5), random forest (RF), κ-nearest neighbor (kNN), and naïve Bayes (NB) algorithms, along with MACCS and FP4 fingerprints. One-against-one (OAO) and binary tree (BT) strategies were employed for SVM multiclassification. Performances were measured by two external validation sets containing 1678 and 375 chemicals, separately. The overall accuracy of the MACCS-SVM(OAO) model was 83.0% and 89.9% for external validation sets I and II, respectively, which showed reliable predictive accuracy for each class. In addition, some representative substructures responsible for acute oral toxicity were identified using information gain and substructure frequency analysis methods, which might be very helpful for further study to avoid the toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.