Di-iron hydrogenases
are a class of enzymes that are capable of
reducing protons to form molecular hydrogen with high efficiency.
In addition to the catalytic site, these enzymes have evolved dedicated
pathways to transport protons and electrons to the reaction center.
Here, we present a detailed study of the most likely proton transfer
pathway in such an enzyme using QM/MM molecular dynamics simulations.
The protons are transported through a channel lined out from the protein
exterior to the di-iron active site, by a series of hydrogen-bonded,
weakly acidic or basic, amino acids and two incorporated water molecules.
The channel shows remarkable flexibility, which is an essential feature
to quickly reset the hydrogen-bond direction in the channel after
each proton passing. Proton transport takes place via a “hole”
mechanism, rather than an excess proton mechanism, the free energy
landscape of which is remarkably flat, with a highest transition state
barrier of only 5 kcal/mol. These results confirm our previous assumptions
that proton transport is not rate limiting in the H
2
formation
activity and that cysteine C299 may be considered protonated at physiological
pH conditions. Detailed understanding of this proton transport may
aid in the ongoing attempts to design artificial biomimetic hydrogenases
for hydrogen fuel production.