Volume 2A: Turbomachinery 2015
DOI: 10.1115/gt2015-42227
|View full text |Cite
|
Sign up to set email alerts
|

Unsteady Analysis of Inter-Rows Stator-Rotor Spacing Effects on a Transonic, Low-Aspect Ratio Turbine

Abstract: The aerodynamic performances of an axial turbine are affected by the distance between the stator and the rotor. Previous studies have shown different trends, depending mainly on whether the turbine is subsonic or not. The present paper aims at improving the understanding of the effect of rows spacing on the flow through a transonic turbine. A one-stage, low aspect ratio, high pressure turbine case is investigated using CFD. Steady and unsteady phase-lagged RANS computations are performed on this… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…As the stator shock sweep the rotor leading edge region, unsteadiness in the static pressure is found and for this in the boundary layer evolution; luckily, this happens where the boundary layer momentum deficit is close to be the smallest at the very beginning of the boundary layer evolution. As reported by [1,[36][37][38], the rotor trailing edge region is slightly affected, at least in term of static pressure and for this the boundary layer and the rotor wake are expected to be almost steady. The highest interaction is found in the leading edge/suction side region as clearly reported in Figure 12; the shock sweeping on the rotor leading edge first interact with the suction side of the blade (approx.…”
Section: Stator Shock-rotor Blade Interactionmentioning
confidence: 55%
“…As the stator shock sweep the rotor leading edge region, unsteadiness in the static pressure is found and for this in the boundary layer evolution; luckily, this happens where the boundary layer momentum deficit is close to be the smallest at the very beginning of the boundary layer evolution. As reported by [1,[36][37][38], the rotor trailing edge region is slightly affected, at least in term of static pressure and for this the boundary layer and the rotor wake are expected to be almost steady. The highest interaction is found in the leading edge/suction side region as clearly reported in Figure 12; the shock sweeping on the rotor leading edge first interact with the suction side of the blade (approx.…”
Section: Stator Shock-rotor Blade Interactionmentioning
confidence: 55%