In this chapter, we present a modified version of the spectral relaxation method for solving singular initial value problems for some Emden-Fowler equations. This study was motivated by the several applications that these equations have in Science. The first step of the method of solution makes use of linearisation to solve the model problem on a small subinterval of the problem domain. This subinterval contains a singularity at the initial instant. The first step is combined with using the spectral relaxation method to recursively solve the model problem on the rest of the problem domain. We make use of examples to demonstrate that the method is reliable, accurate and computationally efficient. The numerical solutions that are obtained in this chapter are in good agreement with other solutions in the literature.