The low frequency structural and acoustic responses of a fluid loaded shell to propeller induced fluid pressures are investigated. The propeller operates in the non-uniform wake field and produces fluctuating pressures on the blades of the propeller. This in turn generates acoustic waves and a near field that excites the surface of the shell. The resulting incident pressure is scattered and diffracted by the shell surface, and also excites structural vibration. A potential flow panel code is coupled with the Ffowcs-Williams and Hawkings acoustic analogy to predict the fluctuating propeller forces, blade pressures and the resulting incident field on the surface of the fluid loaded shell due to operation of the propeller in a non-uniform inflow. The propeller induced incident pressure field is then combined with a coupled three-dimensional finite element/boundary element model of the submerged shell to predict the vibro-acoustic and scattered field responses.