Abstract:Magnetic resonance (MR) image classification generally performs slice by slice in which case training samples are slice-dependent. Each slice requires its own specific training samples and training samples obtained from one slice are not necessarily applicable to another slice. This paper develops a new approach to unsupervised classification for magnetic resonance images which consists of two stage processes. The first stage develops an unsupervised training sample generation process, called unsupervised volu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.