In the past decades, functional MRI research has investigated mental states and their brain bases in largely static fashion based on evoked responses during blocked and event-related designs. Despite some progress in naturalistic designs, our understanding of threat processing remains largely limited to those obtained with standard paradigms. In the present paper, we applied Switching Linear Dynamical Systems to uncover the dynamics of threat processing during a continuous threat-of-shock paradigm. Importantly, unlike studies in systems neuroscience that frequently assume that systems are decoupled from external inputs, we characterized both endogenous and exogenous contributions to dynamics. First, we demonstrated that the SLDS model learned the regularities of the experimental paradigm, such that states and state transitions estimated from fMRI time series data from 85 ROIs reflected both the proximity of the circles and their direction (approach vs. retreat). After establishing that the model captured key properties of threat-related processing, we characterized the dynamics of the states and their transitions. The results revealed that threat processing can profitably be viewed in terms of dynamic multivariate patterns whose trajectories are a combination of intrinsic and extrinsic factors that jointly determine how the brain temporally evolves during dynamic threat. We propose that viewing threat processing through the lens of dynamical systems offers important avenues to uncover properties of the dynamics of threat that are not unveiled with standard experimental designs and analyses.