2022
DOI: 10.1109/tits.2022.3182858
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised Learning of Optical Flow With Non-Occlusion From Geometry

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(2 citation statements)
references
References 37 publications
0
0
0
Order By: Relevance
“…The aforementioned three aspects support our research intuition to develop a transformer backbone for LiDAR odometry. Motivated by the motion information estimation method from soft correspondences in optical flow (Wang, Ren, and Wang 2022) and scene flow tasks (Wang et al 2022a(Wang et al ,b, 2021a, we directly estimate pose from conditioned features after the cross attention. Overall, our contributions are as follows:…”
Section: Introductionmentioning
confidence: 99%
“…The aforementioned three aspects support our research intuition to develop a transformer backbone for LiDAR odometry. Motivated by the motion information estimation method from soft correspondences in optical flow (Wang, Ren, and Wang 2022) and scene flow tasks (Wang et al 2022a(Wang et al ,b, 2021a, we directly estimate pose from conditioned features after the cross attention. Overall, our contributions are as follows:…”
Section: Introductionmentioning
confidence: 99%
“…Sedangkan, Unsupervised learning adalah teknik yang tidak menggunakan data yang telah diberi label atau kategori oleh manusia. Dalam teknik ini, mesin dapat mencari pola dan hubungan dalam data tanpa adanya panduan atau kategori tertentu [9].…”
unclassified