2018
DOI: 10.1016/j.radonc.2018.06.025
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised machine learning of radiomic features for predicting treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic body radiation therapy

Abstract: Background and purpose: To predict treatment response and survival of NSCLC patients receiving stereotactic body radiation therapy (SBRT), we develop an unsupervised machine learning method for stratifying patients and extracting meta-features simultaneously based on imaging data. Material and methods: This study was performed based on an 18F-FDG-PET dataset of 100 consecutive patients who were treated with SBRT for early stage NSCLC. Each patient’s tumor was characterized by 722 radiomic features. An unsupe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
46
0
3

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 83 publications
(54 citation statements)
references
References 44 publications
1
46
0
3
Order By: Relevance
“…Radiomics features from CT, PET/CT, and cone beam CT have also shown predictive value for response to treatment. [16][17][18][19][20][21][22][23][24] Investigators analyzed the daily noncontrast CT scans, acquired during routine image-guided radiation therapy using in-room CT, from patients with head and neck, 25 lung, 26 and pancreatic cancers. 27 They reported that radiation can induce patient-specific changes in CT texture features and that these changes can be detected in the early phase of radiation therapy.…”
Section: Tumor Detection and Diagnosismentioning
confidence: 99%
“…Radiomics features from CT, PET/CT, and cone beam CT have also shown predictive value for response to treatment. [16][17][18][19][20][21][22][23][24] Investigators analyzed the daily noncontrast CT scans, acquired during routine image-guided radiation therapy using in-room CT, from patients with head and neck, 25 lung, 26 and pancreatic cancers. 27 They reported that radiation can induce patient-specific changes in CT texture features and that these changes can be detected in the early phase of radiation therapy.…”
Section: Tumor Detection and Diagnosismentioning
confidence: 99%
“…This was achieved using an unsupervised clustering analysis method based on distinctive radiographic imaging features. 42 This field of image analysis, termed "radiomics," is geared at characterizing image features and correlating them with a tumor phenotype, with the intent of classifying and staging tumors noninvasively. Extracted features convert radiographic images into mineable data and can be utilized to build predictive and prognostic models.…”
Section: Applications To Thoracic Imagingmentioning
confidence: 99%
“…Dies führt im Endeffekt zu patientenindividuellen prognostischen Faktoren sowie patientenindividuellen prädiktiven Faktoren. Letztlich werden daraus eine Therapiestratifizierung sowie eine Therapiesequenzierung gefolgert und die Lebensqualität des Patienten maßgeblich beeinflusst [11].…”
Section: Eine Mögliche Ideale Zukünftige Interaktion Zwischen Menscheunclassified
“…Ein weiteres Einsatzgebiet für die Texturanalyse könnte zukünftig auch die Evaluation des Therapieansprechens sein, da bereits gezeigt werden konnte, dass die Texturanalyse der FDG-PET/CT Responder von Non-Respondern schon während des Therapiestarts unterscheiden konnte [3]. Es besteht bereits eine unbeaufsichtigte Clustermethode im Rahmen des "Machine Learning", um das Therapieansprechen und das allgemeine Überleben von bestrahlten NSCLC-Patienten zu überprüfen, die das Überleben und die nodale Rezidivfreiheit besser vorhersagen konnte als gängige Alternativmethoden [11].…”
Section: "Machine Learning" Durch Die Fdg-pet/ Ct Bei Bronchialkarzinunclassified