[F]FDG-PET/CT before and shortly after allogeneic HCT is a powerful predictor for progression-free and overall survival in MM patients.
BackgroundQuantitative diffusion-weighted imaging (DWI) probes into tissue microstructure in solid tumours. In this retrospective ethically approved study, we investigated DWI as a potential non-invasive predictor of tumour dignity and prognosis in paediatric patients with neuroblastic tumours.MethodsNineteen consecutive patients with neuroblastoma (NB, n = 15), ganglioneuroblastoma (GNB, n = 1) and ganglioneuroma (GN, n = 3) underwent 3-T magnetic resonance imaging at first diagnosis and after 3-month follow-up, following a protocol including DWI (b = 50 and 800 s/mm2) in addition to standard sequences. All DWI scans were analysed for tumour volume assessment and apparent diffusion coefficient (ADC) calculation. Correlation with tumour pathology and risk factors (bone-marrow metastases, MYCN-amplification and 1p-deletion), therapeutic regime (observation versus chemotherapy) and clinical follow-up was evaluated.ResultsAt baseline, mean ADC in NB was lower than in GNB/GN (0.76 vs. 1.47 × 10−3 mm2/s, p = 0.003). An ADC cutoff ≤ 1.05 identified malignant disease with 100.0% sensitivity (95% confidence interval [CI] 29.2–100.0%) and 93.8% specificity (95% CI 69.8–99.8%). Initial ADC was < 0.80 in all NB patients with eventual tumour relapse. During follow-up, tumour ADC values increased in the observation group (NB/GN) without relapse (p = 0.043). In eventually relapsing tumours, ADC values at follow-up tended to decrease further despite reduction in tumour volume.ConclusionsADC values at first presentation differed significantly between malignant and benign neuroblastic tumours. Low baseline ADC was predictive of tumour progression and relapse in NB patients. With therapy, increasing ADC values appeared to predict relapse-free survival, while a decreasing ADC during therapy was an indicator of poor prognosis.
Purpose The recent developments of tau-positron emission tomography (tau-PET) enable in vivo assessment of neuropathological tau aggregates. Among the tau-specific tracers, the application of 11C-pyridinyl-butadienyl-benzothiazole 3 (11C-PBB3) in PET shows high sensitivity to Alzheimer disease (AD)-related tau deposition. The current study investigates the regional tau load in patients within the AD continuum, biomarker-negative individuals (BN) and patients with suspected non-AD pathophysiology (SNAP) using 11C-PBB3-PET. Materials and methods A total of 23 memory clinic outpatients with recent decline of episodic memory were examined using 11C-PBB3-PET. Pittsburg compound B (11C-PIB) PET was available for 17, 18F-flurodeoxyglucose (18F-FDG) PET for 16, and cerebrospinal fluid (CSF) protein levels for 11 patients. CSF biomarkers were considered abnormal based on Aβ42 (< 600 ng/L) and t-tau (> 450 ng/L). The PET biomarkers were classified as positive or negative using statistical parametric mapping (SPM) analysis and visual assessment. Using the amyloid/tau/neurodegeneration (A/T/N) scheme, patients were grouped as within the AD continuum, SNAP, and BN based on amyloid and neurodegeneration status. The 11C-PBB3 load detected by PET was compared among the groups using both atlas-based and voxel-wise analyses. Results Seven patients were identified as within the AD continuum, 10 SNAP and 6 BN. In voxel-wise analysis, significantly higher 11C-PBB3 binding was observed in the AD continuum group compared to the BN patients in the cingulate gyrus, tempo-parieto-occipital junction and frontal lobe. Compared to the SNAP group, patients within the AD continuum had a considerably increased 11C-PBB3 uptake in the posterior cingulate cortex. There was no significant difference between SNAP and BN groups. The atlas-based analysis supported the outcome of the voxel-wise quantification analysis. Conclusion Our results suggest that 11C-PBB3-PET can effectively analyze regional tau load and has the potential to differentiate patients in the AD continuum group from the BN and SNAP group.
Background and aims: Intravenous thrombolysis (IVT) is standard of care for disabling acute ischemic stroke (AIS) within a time window of ⩽ 4.5 h. Some AIS patients cannot be treated with IVT due to limiting contraindications, including heparin usage in an anticoagulating dose within the past 24 h or an elevated activated prothrombin time (aPTT) > 15 s. Protamine is a potent antidote to unfractionated heparin. Objectives: The objective of this study was to investigate the safety and efficacy of IVT in AIS patients after antagonization of unfractionated heparin with protamine. Methods: Patients from our stroke center (between January 2015 and September 2021) treated with IVT after heparin antagonization with protamine were analyzed. National Institutes of Health Stroke Scale (NIHSS) was used for stroke severity and modified Rankin Scale (mRS) for outcome assessment. Substantial neurological improvement was defined as the difference between admission and discharge NIHSS of ⩾8 or discharge NIHSS of ⩽1. Good outcome at follow-up after 3 months was defined as mRS 0–2. Safety data were obtained for mortality, symptomatic intracerebral hemorrhage (sICH), and for adverse events due to protamine. Second, a systematic review was performed searching PubMed and Scopus for studies and case reviews presenting AIS patients treated with IVT after heparin antagonization with protamine. The search was limited from January 1, 2011 to September 29, 2021. Furthermore, we conducted a propensity score matching comparing protamine-treated patients to a control IVT group without protamine (ratio 2:1, match tolerance 0.2). Results: A total of 16 patients, 5 treated in our hospital and 11 from literature, [65.2 ± 13.1 years, 37.5% female, median premorbid mRS (pmRS) 1 (IQR 1, 4)] treated with IVT after heparin antagonization using protamine were included and compared to 31 IVT patients [76.2 ± 10.9 years, 45% female, median pmRS 1 (IQR 0, 2)]. Substantial neurological improvement was evident in 68.8% of protamine-treated patients versus 38.7% of control patients ( p = 0.028). Good clinical outcome at follow-up was observed in 56.3% versus 58.1% of patients ( p = 0.576). No adverse events due to protamine were reported, one patient suffered sICH after secondary endovascular thrombectomy of large vessel occlusion. Mortality was 6.3% versus 22.6% ( p = 0.236). Conclusion: IVT after heparin antagonization with protamine seems to be safe and, prospectively, may extend the number of AIS patients who can benefit from reperfusion treatment using IVT. Further prospective registry trials would be helpful to further investigate the clinical applicability of heparin antagonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.