Achieving satisfactory results with Convolutional Neural Networks (CNNs) depends on how effectively the filters are trained. Conventionally, an appropriate number of filters is carefully selected, the filters are initialized with a proper initialization method and trained with backpropagation over several epochs. This training scheme requires a large labeled dataset, which is costly and time-consuming to obtain. In this study, we propose an unsupervised approach that extracts convolutional filters from a given dataset in a self-organized manner by processing the training set only once without using backpropagation training. The proposed method allows for the extraction of filters from a given dataset in the absence of labels. In contrast to previous studies, we no longer need to select the best number of filters and a suitable filter weight initialization scheme. Applying this method to the MNIST, EMNIST-Digits, Kuzushiji-MNIST, and Fashion-MNIST datasets yields high test performances of 99.19%, 99.39%, 95.03%, and 90.11%, respectively, without applying backpropagation training or using any preprocessed and augmented data.INDEX TERMS Convolutional neural networks, feature extraction, unsupervised learning.