We present an encephalography (EEG) connectivity study where 30 healthy male nonsmokers were randomly allocated either to a nicotine group (14 subjects, 7 mg of transdermal nicotine) or to a placebo group. EEG activity was recorded in an eyes-open (EO) and eyes-closed (EC) condition before and after drug administration. This is a reanalysis of a previous dataset. Through a source reconstruction procedure, we extracted 13 time series representing 13 sources belonging to a resting-state network. Here, we conducted connectivity analysis (renormalized partial directed coherence; rPDC) on sources, focusing on the frequency range of 8.5-18.4 Hz, subdivided into 3 frequency bands (α1, α2, and β1) with the hypothesis that an increase in vigilance would modulate connectivity. Furthermore, a phase-amplitude coupling (mean resultant vector length; VL) analysis, was performed investigating whether an increase of vigilance would modulate phase-amplitude coupling. In the VL analysis we estimated the coupling of the phases of 3 low frequencies (α1, α2, and β1), respectively, with the amplitude of high-frequency oscillations (30-40 Hz, low γ). With rPDC we found that during the EC condition, nicotine decreased feedback connectivity (from the precentral gyrus to precuneus, angular gyrus, cuneus and superior occipital gyrus) at 10.5-12.4 Hz. The VL analysis showed nicotine-induced increases in coupling at 10.5-18.4 Hz in the precuneus, cuneus and superior occipital gyrus during the EC condition. During the EO condition, no significant results were found in connectivity or phase-amplitude coupling measures at any frequency range. In conclusion, the results suggest that nicotine potentially increases the level of vigilance in the EC condition.