Heat transfer through building envelopes is a crucial aspect of energy efficiency in construction. Masonry walls, being a commonly used building material, have a significant impact on thermal performance. In recent years, green roofs and walls have gained popularity as a means of improving energy efficiency, reducing urban heat islands, and enhancing building aesthetics. This study aims to investigate the effect of ivy (Hedera helix) greening on heat transfer through masonry walls and their corresponding surface temperatures. Ivy was chosen as a model plant due to its widespread use and ability to cover large surface areas. The results of this study suggest that ivy greening can have a significant impact on the thermal performance of masonry walls. During winter, the heat transfer coefficient of greened walls was found to be up to 30% lower compared to non-greened walls. This indicates that ivy greening can help reduce energy consumption for heating and thus improve the energy efficiency of buildings. In addition, the surface temperature under the ivy was found to be significantly higher than on the bare wall during winter. However, during summer, the surface temperature under the ivy was lower than on the bare wall, which may help reduce cooling energy consumption. The results of this study are consistent with previous research in the field. Overall, this study provides valuable insights into the potential benefits of ivy greening on the thermal performance of masonry walls.