2011
DOI: 10.1007/s00778-011-0244-8
|View full text |Cite
|
Sign up to set email alerts
|

Unveiling the complexity of human mobility by querying and mining massive trajectory data

Abstract: The technologies of mobile communications\ud pervade our society and wireless networks sense the movement\ud of people, generating large volumes of mobility data,\ud such as mobile phone call records and Global Positioning\ud System (GPS) tracks. In this work, we illustrate the striking\ud analytical power of massive collections of trajectory data in\ud unveiling the complexity of human mobility. We present the\ud results of a large-scale experiment, based on the detailed trajectories\ud of tens of thousands p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
140
0
7

Year Published

2013
2013
2019
2019

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 256 publications
(148 citation statements)
references
References 29 publications
1
140
0
7
Order By: Relevance
“…FCD are an important data-source in traffic research. FCD allow to calculate time-dependent travel times along urban corridors [1], reveal traffic congestions [2] and unveil the complexity of human mobility [3]. They help to identify flaws in urban traffic planning [4] and to infer traffic states [5].…”
Section: Introductionmentioning
confidence: 99%
“…FCD are an important data-source in traffic research. FCD allow to calculate time-dependent travel times along urban corridors [1], reveal traffic congestions [2] and unveil the complexity of human mobility [3]. They help to identify flaws in urban traffic planning [4] and to infer traffic states [5].…”
Section: Introductionmentioning
confidence: 99%
“…For instance, Kharrat et al (2008) proposed an algorithm (NETSCAN) for mobile object clustering and applied it in an environment constrained by a network. Giannotti et al (2011) presented a query and data mining system named M-Atlas, but noted that it is difficult to transform GPS tracking data into mobility knowledge. Etienne et al (2012) provided a method for detecting outliers of spatiotemporal trajectories with primary applicability for travel behaviour analysis.…”
Section: Introductionmentioning
confidence: 99%
“…O estudo insere-se no contexto da mineração de dados espaço-temporais de mobilidade, e a finalidade é apresentar uma ferramenta de análise espacial para auxiliar o processo de tomada de decisão no monitoramento de veículos e na gestão do sistema de transporte urbano, de modo a abordar algumas questões fundamentais do estudo da mobilidade urbana (quais os padrões espaciais das viagens urbanas; dos diferentes tipos de veículos; como se associam aos diferentes ramos de atividades econômicas; etc. ), tais como as apresentadas em Giannotti et al (2011).…”
Section: Introductionunclassified
“…Alternativamente, o presente estudo prevê que grandes volumes de dados ("big data") de mobilidade, mesmo em estado bruto, podem ser usados para superar as restrições das pesquisas de campo, como os altos custos envolvidos, baixa periodicidade de realização (frequência), rápida obsolescência, não são completas nem exatas. Por outro lado, os dados de mobilidade coletados remotamente são verdades de campo, pois descrevem atividades móveis reais, e desta forma são considerados dados confiáveis e podem ser continuamente coletados em tempo real (Giannotti et al, 2011).…”
Section: Introductionunclassified