The construction of urban cross-river tunnels usually requires passing under river embankments, which inevitably disturbs the embankment substratum and causes ground deformation. Previous engineering cases have shown that embankment settlement is greater than ordinary surface settlement and that uneven settlement results in cracks of in the embankment, reducing the embankment stability. Based on a cross-river tunnel project in China, the construction risks caused by the additional stress on the embankment substratum, asymmetrical embankment load, and shield tunneling in saturated fine sand are analyzed during a large-diameter slurry shield tunneling below an urban river embankment diagonally. Additionally, relevant risk control measures, such as slurry pressure, jacking thrust setting, and driving velocity in the saturated fine sand stratum, are evaluated. The results show that during shield tunneling under a diagonal urban river embankment, the additional stress and asymmetrical load effects should be considered, and the shield slurry pressure and jacking thrust should be adjusted according to the distance between the cutter head and the embankment. Furthermore, based on settlement monitoring data, the driving velocity of the shield should be reasonably adjusted in a timely manner to avoid disturbing the fine sand stratum below the embankment.