The crystallization of alkane melts on carbon nanotubes (CNT) and the surface of graphene nanosheets (GNS) is investigated using molecular dynamics (MD) simulations. The crystallization process of the alkane melts is analyzed in terms of the bond-orientational order parameter, atomic radial distribution for the CNT/alkane, atomic longitudinal distribution for the GNS/alkane, and diffusion properties. The dimensional effects of the different carbon-based nanostructures on the crystallization of alkane melts are shown. It is found that one-dimensional CNT has a stronger ability to induce the crystallization of the polymer than that of two-dimensional GNS, which provides a support at molecular level for the experimental observation [Li et al., J. Am. Chem. Soc., 2006, 128, 1692 and Xu et al., Macromolecules, 2010, 43, 5000]. From the MD simulations, we also find that the crystallization of alkane molecules has been completed with the highly cooperative processes of adsorption and orientation.
Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.
Homogeneous nucleation process of polyethylene (PE) is studied with full-atom molecular dynamic simulation. To account the complex shape with low symmetry and the peculiar intra-chain conformational order of polymer, we introduce a shape descriptor OCB coupling conformational order and inter-chain rotational symmetry, which is able to differentiate hexagonal and orthorhombic clusters from melt. With the shape descriptor OCB, we find that coupling between conformational and inter-chain rotational orderings results in the formation of hexagonal clusters first, which is dynamic in nature. Whilst nucleation of orthorhombic structure occurs inside of hexagonal clusters later, which proceeds via the coalescence of neighboring hexagonal clusters rather than standard stepwise growth process. This demonstrates that nucleation of PE crystal is a two-step process with the assistance of OCB order, which is different from early models for polymer crystallization but similar with that proposed for spherical 'atoms' like colloid and metal. 3 Significance StatementBy introducing a shape descriptor OCB that couples intra-chain conformational order and inter-chain rotational order, we successfully differentiate local structures with hexagonal and orthorhombic symmetries and observe OCB order assisted two-step nucleation process in polyethylene crystallization. OCB order is demonstrated to promote the transformation from flexible chains to conformational ordered segments, which is the most peculiar and critical step in polymer crystallization. The shape descriptor OCB may be universal on differentiating local orders in polymer or systems with connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.