Cadmium (Cd) and lead (Pb) are two toxic heavy metals (HMs) whose presence in soil is generally low. However, industrial and agricultural activities in recent years have significantly raised their levels, causing progressive accumulations in plant edible tissues, and stimulating research in this field. Studies on toxic metals are commonly focused on a single metal, but toxic metals occur simultaneously. The understanding of the mechanisms of interaction between HMs during uptake is important to design agronomic or genetic strategies to limit contamination of crops. To study the single and combined effect of Cd and Pb on durum wheat, a hydroponic experiment was established to examine the accumulation of the two HMs. Moreover, the molecular mechanisms activated in the roots were investigated paying attention to transcription factors (bHLH family), heavy metal transporters and genes involved in the biosynthesis of metal chelators (nicotianamine and mugineic acid). Cd and Pb are accumulated following different molecular strategies by durum wheat plants, even if the two metals interact with each other influencing their respective uptake and translocation. Finally, we demonstrated that some genes (bHLH 29, YSL2, ZIF1, ZIFL1, ZIFL2, NAS2 and NAAT) were induced in the durum wheat roots only in response to Cd.