Carbapenem-resistant (CRE) infection is highly endemic in China, but estimates of the infection burden are lacking. We established the incidence of CRE infection from a multicenter study that covered 25 tertiary hospitals in 14 provinces. CRE cases defined as carbapenem-nonsusceptible, ,, or infections during January to December 2015 were collected and reviewed from medical records. Antimicrobial susceptibility testing and carbapenemase gene identification were performed. Among 664 CRE cases, most were caused by (73.9%), followed by (16.6%) and (7.1%). The overall CRE infection incidence per 10,000 discharges was 4.0 and differed significantly by region, with the highest in Jiangsu (14.97) and the lowest in Qinghai (0.34). Underlying comorbidities were found in 83.8% of patients; the median patient age was 62 years (range, 45 to 74 years), and 450 (67.8%) patients were male. Lower respiratory tract infections (65.4%) were the most common, followed by urinary tract infection (16.6%), intra-abdominal infection (7.7%), and bacteremia (7.7%). The overall hospital mortality rate was 33.5%. All isolates showed nonsusceptibility to carbapenems and cephalosporins. The susceptibility rate of polymyxin B was >90%. Tigecycline demonstrated a higher susceptibility rate against than against (90.9% versus 40.2%). Of 155 clinical isolates analyzed, 89% produced carbapenemases, with a majority of isolates producing KPC (50%) or NDM (33.5%)-type beta-lactamases among and The incidence of CRE infection in China was 4.0 per 10,000 discharges. The patient-based disease burden in tertiary hospitals in China is severe, suggesting an urgent need to enhance infection control.
Blue emissions in organic light-emitting devices (OLEDs) are of great significance for their application in full color flat-panel displays and white lightings. [1] However, high-performance blue emitters are still relatively rare. In OLEDs, the injected electrons and holes recombine to form singlet and triplet excitons in the ratio of 1:3, according to the spin statistics, whereas only singlet exciton can decay radiatively in fluorescent materials. [2] Approximately 75% of the triplet excitons are wasted in nonradiative processes, leading to an upper limit of the internal quantum efficiency (IQE) of only 25% in conventional fluorescent devices. One of the methods to enhance the efficiency of OLEDs is to make use of the nonemissive triplet excitons. [3] Phosphorescent OLEDs (PhOLEDs) based on Ir, Pt, and Os organic-metal complexes can approach 100% IQE, which is attributed to the heavy-atom effect. [4] Yet, pure-blue and deep-blue phosphors with Commission Internationale de l'Eclairage (CIE) y values smaller than 0.15 are particularly scarce due to the inherently great challenge in their molecular design; similarly, proper host materials with a large band gap that allows for the refinement of the triplet excitons in devices are also rare. Therefore, it is important to find a way to develop efficient, stable, pure-and deep-blue fluorescent materials. In principle, new-generation, purely organic fluorescent materials can also utilize the nonemissive triplet excitons and achieve high efficiency by converting triplet excitons into singlet excitons. The main mechanisms involve triplet-triplet annihilation (TTA), thermally activated delayed fluorescence (TADF) and the "hot exciton" channel. [5] Essentially, both the TTA and TADF processes can promote the external quantum efficiency (EQE) of the devices by converting excitons from the lowest triplet excited state (T 1 ) to the lowest singlet excited state (S 1 ). Experimental results have confirmed that devices based on TTA and TADF materials can realize a high EQE with a breakthrough of the spin statistical limitation. [6] Although a high EQE has been obtained in TTA and TADF materials, pure-and deep-blue emitters with high efficiency and stability are still exiguous. Unlike TTA and TADF materials, the "hot exciton" materials reported by our group highlight the reverse intersystem crossing from Purely organic electroluminescent materials, such as thermally activated delayed fluorescent (TADF) and triplet-triplet annihilation (TTA) materials, basically harness triplet excitons from the lowest triplet excited state (T 1 ) to realize high efficiency. Here, a fluorescent material that can convert triplet excitons into singlet excitons from the high-lying excited state (T 2 ), referred to here as a "hot exciton" path, is reported. The energy levels of this compound are determined from the sensitization and nanosecond transient absorption spectroscopy measurements, i.e., small splitting energy between S 1 and T 2 and rather large T 2 -T 1 energy gap, which are expected to...
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve high efficiency in doped and nondoped organic light‐emitting diodes (OLEDs) are rarely reported. Reported here is a strategy using a tri‐spiral donor for such versatile blue TADF emitters. Impressively, by simply extending the nonconjugated fragment and molecular length, aggregation‐caused emission quenching (ACQ) can be greatly alleviated to achieve as high as a 90 % horizontal orientation dipole ratio and external quantum efficiencies (EQEs) of up to 33.3 % in doped and 20.0 % in nondoped sky‐blue TADF‐OLEDs. More fascinatingly, a high‐efficiency purely organic white OLED with an outstanding EQE of up to 22.8 % was also achieved by employing TspiroS‐TRZ as a blue emitter and an assistant host. This compound is the first blue TADF emitter that can simultaneously achieve high electroluminescence (EL) efficiency in doped, nondoped sky‐blue, and white TADF‐OLEDs.
Abstract-The modular multilevel converter (MMC) is distinguished by its modularity, that is the use of standardized submodules (SMs). To enhance reliability and avoid unscheduled maintenance, it is desired that MMC can remain operational without having to shut down despite some of its SMs are failed. Particularly, in this paper, a complete fault diagnosis and tolerant control solution, including the fault detection, fault tolerance, fault localization, and fault reconfiguration, has been proposed to ride through the IGBT open-circuit failures. The fault detection method detects the fault by means of state observers and the knowledge of fault behaviors of MMC, without using any additional sensors. Then MMC is controlled in a newly proposed tolerant mode until the specific faulty SM is located by the fault localization method, thus no overcurrent problems will happen during this time interval. After that, the located faulty SM will be bypassed while the remaining SMs are reconfigured to provide continuous operation. Throughout the fault periods, it allows the MMC to operate smoothly without obvious waveform distortion and power interruption. Finally, experimental results using a single-phase scaled-down MMC prototype with six SMs per arm show the validity and feasibility of the proposed methods. Index Terms-Fault diagnosis, fault tolerance, insulated gate bipolar transistor (IGBT), modular multilevel converter (MMC), open-circuit failure, redundancy, state observer, submodule (SM).
The antiviral cGMP-AMP (cGAMP)-imulator of terferonenes (STING) pathway is well characterized in mammalian cells. However, whether this pathway also plays a role in insect antiviral immunity is unknown. In this study, we found that cGAMP is produced in silkworm () cells infected with nucleopolyhedrovirus (NPV). In searches for STING-related sequences, we identified , a potential cGAMP sensor in We observed that overexpression effectively inhibits NPV replication in silkworm larvae, whereas dsRNA-mediated knockdown resulted in higher viral load. Cleavage and nuclear translocation of BmRelish, a NF-κB-related transcription factor, was also observed when BmSTING was overexpressed and was enhanced by cGAMP stimulation or viral infection of larvae. Moreover, we identified a caspase-8-like protein (BmCasp8L) as a BmSTING-interacting molecule and as a suppressor of BmSTING-mediated BmRelish activation. Interestingly, cGAMP stimulation decreased BmCasp8L binding to BmSTING and increased BmRelish activity. Of note, an interaction between death-related ced-3/Nedd2-like caspase (BmDredd) and BmSTING promoted BmRelish cleavage for efficient antiviral signaling and protection of insect cells from viral infection. Our findings have uncovered BmSTING as a critical mediator of antiviral immunity in the model insect and have identified several BmSTING-interacting proteins that control antiviral defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.