The antiviral cGMP-AMP (cGAMP)-imulator of terferonenes (STING) pathway is well characterized in mammalian cells. However, whether this pathway also plays a role in insect antiviral immunity is unknown. In this study, we found that cGAMP is produced in silkworm () cells infected with nucleopolyhedrovirus (NPV). In searches for STING-related sequences, we identified , a potential cGAMP sensor in We observed that overexpression effectively inhibits NPV replication in silkworm larvae, whereas dsRNA-mediated knockdown resulted in higher viral load. Cleavage and nuclear translocation of BmRelish, a NF-κB-related transcription factor, was also observed when BmSTING was overexpressed and was enhanced by cGAMP stimulation or viral infection of larvae. Moreover, we identified a caspase-8-like protein (BmCasp8L) as a BmSTING-interacting molecule and as a suppressor of BmSTING-mediated BmRelish activation. Interestingly, cGAMP stimulation decreased BmCasp8L binding to BmSTING and increased BmRelish activity. Of note, an interaction between death-related ced-3/Nedd2-like caspase (BmDredd) and BmSTING promoted BmRelish cleavage for efficient antiviral signaling and protection of insect cells from viral infection. Our findings have uncovered BmSTING as a critical mediator of antiviral immunity in the model insect and have identified several BmSTING-interacting proteins that control antiviral defenses.
Insect gut immunity is the first line of defense against oral infection. Although a few immune-related molecules in insect intestine has been identified by genomics or proteomics approach with comparison to well-studied tissues, such as hemolymph or fat body, our knowledge about the molecular mechanism underlying the gut immunity which would involve a variety of unidentified molecules is still limited. To uncover additional molecules that might take part in pathogen recognition, signal transduction or immune regulation in insect intestine, a T7 phage display cDNA library of the silkworm midgut is constructed. By use of different ligands for biopanning, Translationally Controlled Tumor Protein (TCTP) has been selected. BmTCTP is produced in intestinal epithelial cells and released into the gut lumen. The protein level of BmTCTP increases at the early time points during oral microbial infection and declines afterwards. In vitro binding assay confirms its activity as a multi-ligand binding molecule and it can further function as an opsonin that promotes the phagocytosis of microorganisms. Moreover, it can induce the production of anti-microbial peptide via a signaling pathway in which ERK is required and a dynamic tyrosine phosphorylation of certain cytoplasmic membrane protein. Taken together, our results characterize BmTCTP as a dual-functional protein involved in both the cellular and the humoral immune response of the silkworm, Bombyx mori.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.