We address four objectives, focused on urban and urbanizing watersheds that drain forested (or once-forested) landscapes in humid regions: to document rates of channel change, to evaluate the relationship between development intensity and the rate of channel change, to evaluate geologic and topographic controls on channel change, and to determine if predevelopment conditions can be used to predict erosion-susceptible reaches. We used an 11-year data set covering 21 urban and suburban channels in western Washington, draining watersheds from 0.1 to 20 km 2 , a range that covers both seasonal and perennial channels that generally respond readily and rapidly to watershed disturbance. The results indicate:1. Rates of vertical channel change vary from below the range of measurement error (<20 mm vertical change between visits) to about 1 m (width-averaged) per year. The median rate for this sample population was 60 mm per year. 2. Within these lightly to moderately urbanized watersheds, rates of channel change did not correlate with development intensity. 3. The nature of the geologic substrate strongly influenced whether or not significant channel change occurred, but no unconsolidated substrate appears immune to change given sufficiently severe watershed disturbance. Erosion rates are independent of channel gradient within the range investigated (0.013-0.52). 4. Channels with the greatest susceptibility to rapid vertical change share the following characteristics, which can be used to predict and so reduce the consequences of future urban development on natural stream systems: Erosion-susceptible geologic substrate; Moderate to high gradient; Absence of natural or artificial grade controls; Predevelopment runoff inputs predominantly via subsurface discharge, likely to be converted to surface (point) discharge in the post-development condition.