Human adrenarche is associated with the establishment of a functional zona reticularis (ZR) and increasing secretion of dehydroepiandrosterone (DHEA) in sulfated form (DS). Like most non-human primates, rhesus macaques are not believed to undergo adrenarche, though they clearly establish a functional ZR after birth. However, the origins of the rhesus ZR are not well defined. Therefore, we investigated the zonal development, steroidogenic enzyme expression and morphology of rhesus adrenals from 1 day to 14 months of age. Immunohistochemistry was conducted to determine expression profiles of the steroidogenic enzymes 17a-hydroxylase/17,20-lyase cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), cytochrome P450, family 21, subfamily A, polypeptide 2 (CYP21A2), hydroxy-D-5-steroid dehydrogenase, 3b-and steroid D-isomerase 2 (HSD3B2), the redox partner NADPH-cytochrome P450 oxidoreductase (CPR), as well as the accessory protein cytochrome b5 (b5), a marker of the primate ZR. The rhesus ZR is mature by 3 months of age based on differentiation of the innermost zone that lacks HSD3B2, but exhibits increased b5 expression during this period. Further, the ZR develops in neonates from a previously described dense band of cells which we show expresses b5, CYP17A1, CPR, and CYP21A2 throughout maturation. The fetal zone (FZ) is distinguished from the ZR by its lack of CYP21A2, and ZR development proceeded as the FZ regressed with two important implications: neither FZ regression nor ZR maturation can be monitored independently by circulating adrenal androgens, and these events must be induced by different factors in rhesus, and likely humans. Collectively these data demonstrate that ZR development begins before birth in the rhesus, proceeding concomitantly with FZ regression post-natally, suggesting that rhesus experiences morphological adrenarche during the first three months of life.