Information on the urinary excretion of dehydroepiandrosterone (DHEA) and its direct metabolites is scarce for healthy subjects during growth. We used gas chromatography-mass spectrometry urinary steroid profiling to noninvasively study adrenarchal metabolome in 400 healthy subjects, aged 3-18 yr. Urinary 24-h excretion rates of DHEA did not increase significantly before age 7-8 yr. However, DHEA together with its 16alpha-hydroxylated downstream metabolites, 16alpha-hydroxy-DHEA and 3beta,16alpha,17beta-androstenetriol (DHEA&M), as well as the DHEA metabolite, 5-androstene-3beta,17beta-diol (ADIOL), and the sum of major urinary androgen metabolites (C19) rose consistently from the youngest to the oldest age group. The significant increases (P < 0.01) observed for 24-h excretion rates of C19, ADIOL, and DHEA&M were 2- to 4-fold in boys and girls between age 3 and 8 yr. DHEA&M, for example, rose from about 20 to 80 microg/d (P < 0.0001) during this period. Until the age of 16 yr, DHEA&M excretion also increased to nearly 1000 microg/d. Patterns of steroidogenic enzyme activities were assessed (from definite ratios of urinary steroid metabolites) for 21-hydroxylase, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, and 5alpha-reductase. Our results indicate for healthy boys and girls that adrenarche is a gradual process starting much earlier than hitherto believed. Efficient metabolism of DHEA, especially to 16-hydroxylated steroids, may explain the almost constant levels seen for this steroid until age 7-8 yr. The established reference values for DHEA, DHEA&M, ADIOL, C19 (including androsterone and etiocholanolone), and urinary parameters of steroidogenic enzyme activities could be useful to identify nutritional, environmental, and pathophysiological interrelations with the progressive maturational process of adrenarche. Our data may also be used as reference data for the diagnosis of steroid-related disorders.
Context:P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available.Objective:The objective of the study was to establish genotype-phenotype correlations in a large PORD cohort.Design:The design of the study was the clinical, biochemical, and genetic assessment including multiplex ligation-dependent probe amplification (MLPA) in 30 PORD patients from 11 countries.Results:We identified 23 P450 oxidoreductase (POR) mutations (14 novel) including an exonic deletion and a partial duplication detected by MLPA. Only 22% of unrelated patients carried homozygous POR mutations. p.A287P was the most common mutation (43% of unrelated alleles); no other hot spot was identified. Urinary steroid profiling showed characteristic PORD metabolomes with variable impairment of 17α-hydroxylase and 21-hydroxylase. Short cosyntropin testing revealed adrenal insufficiency in 89%. DSD was present in 15 of 18 46,XX and seven of 12 46,XY individuals. Homozygosity for p.A287P was invariably associated with 46,XX DSD but normal genitalia in 46,XY individuals. The majority of patients with mild to moderate skeletal malformations, assessed by a novel scoring system, were compound heterozygous for missense mutations, whereas nearly all patients with severe malformations carried a major loss-of-function defect on one of the affected alleles.Conclusions:We report clinical, biochemical, and genetic findings in a large PORD cohort and show that MLPA is a useful addition to POR mutation analysis. Homozygosity for the most frequent mutation in Caucasians, p.A287P, allows for prediction of genital phenotype and moderate malformations. Adrenal insufficiency is frequent, easily overlooked, but readily detected by cosyntropin testing.
The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
Macrophages are important in the activation of innate immune responses and in a tissue-specific manner in the maintenance of organ homeostasis. Testicular macrophages (TM), which reside in the testicular interstitial space, comprise the largest leukocyte population in the testes and are assumed to play a relevant function in maintaining testicular immune privilege. Numerous studies have indicated that the interstitial fluid (IF) surrounding the TM has immunosuppressive properties, which may influence the phenotype of TM. However, the identity of the immunosuppressive molecules present in the IF is poorly characterized. We show that the rat testicular IF shifted GM-CSF–induced M1 toward the M2 macrophage phenotype. IF-polarized M2 macrophages mimic the properties of TM, such as increased expression of CD163, high secretion of IL-10, and low secretion of TNF-α. In addition, IF-polarized macrophages display immunoregulatory functions by inducing expansion of immunosuppressive regulatory T cells. We further found that corticosterone was the principal immunosuppressive molecule present in the IF and that the glucocorticoid receptor is needed for induction of the testis-specific phenotype of TM. In addition, TM locally produce small amounts of corticosterone, which suppresses the basal expression of inflammatory genes as a means to render TM refractory to inflammatory stimuli. Taken together, these results suggest that the corticosterone present in the testicular environment shapes the immunosuppressive function and phenotype of TM and that this steroid may play an important role in the establishment and sustenance of the immune privilege of the testis.
Wudy SA, Hartmann MF, Remer T. Sexual dimorphism in cortisol secretion starts after age 10 in healthy children: urinary cortisol metabolite excretion rates during growth. Am J Physiol Endocrinol Metab 293: E970-E976, 2007. First published July 17, 2007; doi:10.1152/ajpendo.00495.2006.-Detailed data on the physiological pattern of adrenocortical activity during normal growth are lacking. An established method to determine adrenocortical glucocorticoid secretion is the measurement of 24-h excretion rates of major urinary cortisol metabolites (C21). To test the hypothesis that the frequently reported higher cortisol secretion in men than in women develops during puberty, we examined C21 together with excretions of combined urinary free and conjugated cortisol (F comb) in 400 healthy boys and girls aged 3-18 yr using GC-MS. Daily excretion rates of C21, F comb, and body surface area (BSA)-corrected Fcomb significantly increased with age in both sexes. In contrast, C21/BSA (g ⅐ m Ϫ2 ⅐ day Ϫ1 ) declined from the age of 3-4 yr to 7-8 yr in boys and girls (P Ͻ 0.01; e.g., in boys: from 3,991 Ϯ 1,167 to 3,193 Ϯ 804), then increased in both sexes, and finally became discordant after the age of 11-12 yr with a further rise in males only (17-to 18-yr-olds: boys, 5,275 Ϯ 1,414; girls 3,939 Ϯ 1,586, P Ͻ 0.01). This pattern was associated with the occurrence of a lower index for 5␣-reductase activity (allotetrahydrocortisol/tetrahydrocortisol) in females compared with males. Our results demonstrate dynamic changes in adrenocortical activity in healthy children resulting in an emerging sexual dimorphism in cortisol secretion after age 11. The latter can be explained, at least partly, by diverging 5␣-reductase activities in boys and girls. F comb , a frequently analyzed GC-MS parameter, proved not to reflect dynamic changes in cortisol secretion. In conclusion, the varying metabolic need for cortisol during normal growth may have implications for future improvements in glucocorticoid replacement therapy. steroid; glucocorticoid; gas chromatography; mass spectrometry IT HAS SO FAR BEEN ASSUMED that cortisol secretion corrected for body surface area is constant throughout childhood and adolescence. This assumption has been based on studies investigating urinary excretion rates of selected glucocorticoid metabolites in mostly small samples of children (2,15,17). However, detailed data on the physiological pattern of daily cortisol secretion, i.e., of adrenocortical activity during normal growth, are lacking.Assessment of cortisol secretion in a huge sample of healthy children and adolescents requires not only a nonstressful and noninvasive protocol but also a practical approach to permit successful realization. The application of invasive techniques based on isotope dilution requires venipuncture and infusions of either stable or radioactively labeled cortisol in specialized hospitals or research units with subsequent sampling of blood and/or urine to recover labeled metabolites (19,22,50). Additionally, administration of isotope...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.