1983
DOI: 10.1002/qua.560230511
|View full text |Cite
|
Sign up to set email alerts
|

Usage de l'Algèbre de Lie su (n) dans l'Etude des Systèmes Quantiques à n Etats. II. Transformation de l'Espace des Observables, Problèmes d'Evolution

Abstract: AbstractsIn the previous paper we examined, for a quantum system, the relation between its n-dimensional state space and the su ( n ) Lie algebra. The present paper is devoted to relations between unitary transformations in the state space and orthogonal transformations in Lie's algebra. Two cases can happen. First, the transformations are independently chosen in the two spaces; this amounts to changing the former relation. On the other hand, the relation is maintained and the unitary operators are then relate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
1
0
7

Year Published

1984
1984
1986
1986

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 3 publications
0
1
0
7
Order By: Relevance
“…We separate the common and differing indices in the two sets by defining The sign will depend on how the common indices are interspersed among the distinct indices of the two sets, but for our purposes a change in sign is of no significance. Now consider an element of SF G(p)(Lr 7 Mr 1p-r) * J(Lr 7 1p-r)) ((Mr 9 (22) where the symbol tf means that This result is essentially a corollary to Theorem 3.2. We begin by noting that if p > q and p + q > r , then p > q > rp.…”
Section: The (S) Vectors {S(tb)} and The (3 Vectors {X(j)} Span Thmentioning
confidence: 99%
“…We separate the common and differing indices in the two sets by defining The sign will depend on how the common indices are interspersed among the distinct indices of the two sets, but for our purposes a change in sign is of no significance. Now consider an element of SF G(p)(Lr 7 Mr 1p-r) * J(Lr 7 1p-r)) ((Mr 9 (22) where the symbol tf means that This result is essentially a corollary to Theorem 3.2. We begin by noting that if p > q and p + q > r , then p > q > rp.…”
Section: The (S) Vectors {S(tb)} and The (3 Vectors {X(j)} Span Thmentioning
confidence: 99%
“…I1 convient de remarquerAque ces conditions ne mettent pas en jeu la partie antisymktrique de la matrice M. Cette erreur ne modifie pas la suite de l'article [5].…”
Section: P * and C ( N -1 ) P N (172)unclassified
“…En introduisant dans 8, une F base {$} ou base orthonormke au sens de Fano [8], on peut Ccrire tout opkateur-densit6 sous la forme n oh le vecteur de coherence P [6,9], de composantes Pf , peut Ctre considCrC comme un vecteur dans un espace euclidien %, (isomorphe B 8,) que nous appellerons dksormais l'espace de cohkrence. Chaque opCrateur-densit6 dCfinit un vecteur P unique.…”
Section: (3)unclassified
“…(2) Lorsque l'espace % du systkme 9, est de dimension finie n , l'ensemble des opkrateurs hermitiques de trace nulle~, muni de l'opkration i [. , .I, forme une alg&bre de Lie 8, isomorphe a su(n) [5,6,7]. Cet espace Ce,, de dimension r = n2 -1, a ktk appelC espace des observables [5,8].…”
Section: Introductionunclassified
See 1 more Smart Citation