AbstractsIn the previous paper we examined, for a quantum system, the relation between its n-dimensional state space and the su ( n ) Lie algebra. The present paper is devoted to relations between unitary transformations in the state space and orthogonal transformations in Lie's algebra. Two cases can happen. First, the transformations are independently chosen in the two spaces; this amounts to changing the former relation. On the other hand, the relation is maintained and the unitary operators are then related to some of the orthogonal operators. This second case is used to study the evolution operators.Dans un article prtctdent, on a ttudit, pour un systkme quantique, la correspondance entre un espace des ttats, de dimension finie, n, et l'algibre de Lie su ( n ) . Dans cet article, les relations entre transformations unitaires dans I'espace des ttats et transformations orthogonales dans I'algkbre de Lie sont ttudites. Deux situations peuvent se produire: soit les transformations sont choisies indtpendamrnent dans les deux espaces, ce qui tquivaut simplement i un changement dans la loi de correspondance; soit, au contraire, la loi de correspondance est conservte, et aux optrateurs unitaires sont alors assocites seulement certaines des transformations orthogonales. Cette seconde possibilitk est utiliste dans I'ttude des optrateurs d'tvolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.