In many organisms reproductive success is strongly dependent on several breeding site characteristics, which often vary in space and time. Although we have a good understanding of how ovipositing organisms respond to single factors, we still have little information about how they respond under more complex natural conditions. We examined the oviposition behavior of a tree-hole breeding frog, Phrynobatrachus guineensis, with respect to abiotic and biotic oviposition site characteristics, including desiccation risk and the presence of conspecific offspring using both observation and experiments. Based on daily monitoring data, compiled from 69 natural oviposition sites during a complete reproductive season, we developed oviposition site-selection models. A model based on water presence, sediment depth and maximal possible water depth showed the best predictive performance and was transferable to the subsequent season. Field observations and experiments revealed that frogs could estimate water-holding capacity of sites and timed oviposition with respect to future water presence. Despite the negative effects on larval growth and the availability of sites without conspecifics, data suggest that ovipositing individuals are attracted to conspecific offspring because they serve as a cue for low predation risk. Our results imply that a site's potential for being used at least once for oviposition was determined by abiotic factors, whereas the relative use of breeding sites was determined by a response to conspecifics. Our study demonstrates the importance of including multiple biotic and abiotic factors in the analysis of oviposition site-selection.