Oridonin is an active diterpenoid, which was extracted from traditional Chinese herbs and had been widely used in clinical treatment nowadays. Oridonin phosphate is one of the derivatives of oridonin. In the present study, we explored its anti-tumor effect and investigated the molecular mechanism of oridonin phosphate in breast cancer cell lines. Firstly, cell viability was analyzed by MTT assay. The breast cancer cells were treated with increasing concentrations of oridonin phosphate for 24, 48 and 72 h, respectively. The results demonstrated that oridonin phosphate inhibited the proliferation of MDA-MB-436 and MDA-MB-231 cells in a dose- and time-dependent manner. Next, cell apoptosis rate was detected in oridonin phosphate-treated breast cancer cells by Annexin V-FITC/PI dual staining analysis and the data demonstrated that oridonin phosphate induced cell apoptosis of breast cancer cells in time- and dose-dependent manner. Moreover, apoptosis-related proteins were detected by Western blotting analysis. The results showed that the expression level of Bax was up-regulated and the expression level of Bcl-2 was down-regulated. Meanwhile, the level of cleaved caspase-9 was significantly increased when the cells were treated with 40 μM of oridonin phosphate for 48 h, although the expression level of pro-caspase-9 was not obviously changed. All of the data revealed that mitochondrial apoptosis pathway may be involved in the cell apoptosis induced by oridonin phosphate in breast cancer cells. Importantly, the expression levels of autophagy-related protein beclin-1 and LC3-II were significantly higher in oridonin phosphate-treated breast cancer cell lines MDA-MB-436 and MDA-MB-231 for 48 h. Additionally, we further explored the relationship between apoptosis and autophagy specifically induced by oridonin phosphate in breast cancer cells. The result showed that inhibition of autophagy suppressed the cell apoptosis in oridonin phosphate-treated MDA-MB-436 cells. Taken together, the compound of oridonin phosphate simultaneously induced cell apoptosis and autophagy in breast cancer cells. Inhibition oridonin phosphate-induced cell autophagy suppressed the progression of cell apoptosis, which revealed that oridonin phosphate-induced autophagy participated in up-regulation of apoptosis in human breast cancer cells. It would provide some new clues for the therapy of breast cancer.