This study depicts the investigations of the effect of composition of aromatic polyester polyol produced from terephthalic acid (TPA) and different concentrations of monoethylene glycol (mEG) as a chain extender on the mechanical properties of polyurethane (PU) elastomer. Aromatic polyester polyols are prepared via the poly-esterification of adipic acid, terephthalic acid, catalyst, and mono ethylene glycol; while a polyurethane elastomer is formulated via the pre-polymerization of polyol with pure monomeric Methylene diphenyl diisocyanate (MDI.) Mechanical properties of polyurethane elastomers are examined, such as hardness via shore A hardness, apparent density via ASTM (American Society for Testing and Materials) D1622–08, and abrasion wear resistance via a Deutches Institut fur Normung (DIN) abrasion wear resistance tester. Structural properties are investigated through Fourier-transform infrared spectroscopy (FTIR) analysis. Results reveal that the shore A hardness of the PU elastomer increases with an increasing concentration of mEG from 4g to 12g. Nevertheless, the elastomer’s density depicts a reduction with an increasing extender content. The abrasion wear resistance of polyurethane, however, increases with an increasing concentration of glycol. A structural analysis through FTIR confirms the formation of polyurethane elastomer through the characteristic peaks demonstrated.