The tet(L) gene of Bacillus subtilis confers low-level tetracycline (Tc) resistance. Previous work examining the >20-fold-inducible expression of tet(L) by Tc demonstrated a 12-fold translational induction. Here we show that the other component of tet(L) induction is at the level of mRNA stabilization. Addition of a subinhibitory concentration of Tc results in a two-to threefold increase in tet(L) mRNA stability. Using a plasmid-borne derivative of tet(L) with a large in-frame deletion of the coding sequence, the mechanism of Tc-induced stability was explored by measuring the decay of tet(L) mRNAs carrying specific mutations in the leader region. The results of these experiments, as well as experiments with a B. subtilis strain that is resistant to Tc due to a mutation in the ribosomal S10 protein, suggest different mechanisms for the effects of Tc on translation and on mRNA stability. The key role of the 5 end in determining mRNA stability was confirmed in these experiments. Surprisingly, the stability of several other B. subtilis mRNAs was also induced by Tc, which indicates that addition of Tc may result in a general stabilization of mRNA.The control of bacterial mRNA decay has been shown to be dependent, in part, on events at or near the 5Ј end. In Escherichia coli, the 5Ј-end dependence of mRNA decay is thought to be due to RNase E, the major decay-initiating endoribonuclease, whose cleavage activity is strongly influenced by the phosphorylation state and accessibility of the 5Ј end (8, 21).In Bacillus subtilis, an RNase E sequence homologue is not identifiable in the genome. Nevertheless, indirect evidence for B. subtilis RNase E activity has been obtained (10), and we have shown, using the erythromycin (Em) resistance gene ermC mRNA as a model, that access to the 5Ј end is critical for determining mRNA half life; Em-induced stalling of a ribosome near the 5Ј end of ermC mRNA results in stabilization of the message (3, 11). The specific set of codons in the ermC leader region coding sequence is required for Em-induced ribosome stalling and resultant ermC mRNA stabilization (17,22). Other B. subtilis mRNAs have not been found to be stabilized by addition of Em.The B. subtilis chromosome contains a tetracycline (Tc) resistance gene (32), designated tet(L), encoding a multifunctional membrane protein that is a physiologically important monovalent cation/proton antiporter that catalyzes Naprotein is also capable of Tc/H ϩ exchange, and the presence of chromosomal tet(L) confers low-level resistance to Tc. Expression of tet(L) is inducible by Tc (7, 26), and inducibility is a function of the 124-nucleotide (nt) tet(L) leader region, which encodes a 20-amino-acid open reading frame (Fig. 1).Using tet(L)-lacZ fusions containing various mutations in the tet(L) leader region, we developed a model for translational regulation that involves Tc-induced reinitiation of translation (27). Specifically, the translational signals for the Tet(L) coding sequence function poorly, so that basal-level translation is low. On the...