Pt-Ru nanoparticles supported on carbon nanofibers (CNF) were synthesized by the sodium borohydride reduction method, using different generation dendrimers (zero, one, two and three generations). After the synthesis process, these materials were submitted to a heat treatment at 350 • C, in order to clean the nanoparticle surface of organic residues. TEM characterization showed that the Pt-Ru nanoparticles size ranged between 1.9 and 5.5 nm. The use of dendrimers did not totally avoid the formation of aggregates, although monodisperse sizes were observed. The heat treatment produces the desired surface cleaning, although promoted the formation of agglomerates and crystalline Ru oxides. The study of the electrochemical activity towards the methanol oxidation displayed some clues about the influence of both the dendrimer generation and the presence of Ru oxides. Moreover, the apparent activation energy E ap for this reaction was determined. The results showed a beneficial effect of the heat treatment on the methanol oxidation current densities for the materials synthesized with the biggest dendrimers, being the methanol deprotonation and CO ad diffusion the predominant rate determining steps (rds).