Herein, employing a previously reported disulfidelinker strategy, we have designed and synthesized a novel cationic lipid 2 with a disulfide-linker and its non-disulfide control analog lipid 1. The relative efficacies of lipids 1 and 2 in transfecting CHO, COS-1 and MCF-7 cells were measured using both reporter gene and whole cell histochemical staining assays. In stark contrast to the expectation based on the disulfide-linker strategy, the control non-disulfide cationic lipid 1 showed phenomenally superior in vitro transfection efficacies to its essentially transfection incompetent disulfide counterpart lipid 2. Results in DNase I protection experiments and the electrophoretic gel patterns in the presence of glutathione, taken together, are consistent with the notion that the success of the disulfide-linker strategy may depend more critically on the DNase I sensitivity of the lipoplexes than on the efficient DNA release induced by intracellular glutathione pool.