Microfluidic fuel cells are limited by the formation of concentration boundary layers at the electrodes, resulting in low power density and low fuel utilization. This work demonstrates a novel method to enhance the diffusion-limited mass transport by decreasing the size of the concentration boundary layer using Dean vortices. These vortices are induced by a curved microchannel and enhance the mass transport of fresh reactant towards the electrodes. Numerical simulations were performed to show the influence of the Dean vortices on the performance of a microfluidic fuel cell. Furthermore, a curved microfluidic device with segmented electrodes was fabricated, which allows to experimentally investigate the effect of the enhanced diffusion-limited mass transport on the current density of a model redox couple and thus to prove the concept and the numerical results. It is shown that the Dean vortices, evolving in the curved channel, cause a convective transport of fresh solution towards the electrodes yielding a high current density and resulting in an improvement of 30% using a curved microfluidic fuel cell instead of a straight one. On condition that diffusive and convective mass transport are well-balanced, this approach promises not only a higher power density, but also a much higher fuel utilization.