A prospective, multicenter, randomized, sibling oocyte study was conducted with 86 couples to evaluate if a microfluidic sperm separation device improved ICSI sperm selection and subsequent cycle outcomes of fertilization, blastocyst utilization, ploidy, and clinical pregnancy rate when applied to a general patient population. Patients with at least 10 metaphase II oocytes were enrolled in the study and sibling oocyte groups were split in half. One half of the oocytes underwent ICSI with the control processed sperm and the other half were injected with sperm sorted by the ZyMōt microfluidic sperm separation device. Fertilization rate was recorded and resulting blastocysts were biopsied and evaluated for ploidy status with NGS. Euploid, non-mosaic embryos were randomly selected for single embryo transfer. A total of 787 oocytes were evaluated in the ZyMōt group and 777 in the control group. No statistical differences were observed between ZyMōt and control processing methods in any of the study outcomes evaluated. It is possible that the selection of normal, progressive sperm for ICSI, and the repair capacity of oocytes are sufficient to promote normal embryonic development in the general infertility population.