2021
DOI: 10.1007/s13246-021-01063-6
|View full text |Cite
|
Sign up to set email alerts
|

Use of optically stimulated luminescence dosimeter and radiophotoliminescent glass dosimeter for dose measurement in dual-source dual-energy computed tomography

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 20 publications
0
2
0
Order By: Relevance
“…Dose to a specific tissue type was determined by using the following formula: Dose0.33emto0.33emtissue0.33emtypei=()μen/ρtissuei()μen/ρair×NanoDotreading×Calibrationfactor$$\begin{eqnarray} {\rm{Dose\ to\ tissue\ type}}\ i &=& \left[ {\frac{{{{\left( {{\mu }_{en}/\rho } \right)}}_{{\rm{tissue}}\ i}}}{{{{\left( {{\mu }_{en}/\rho } \right)}}_{{\rm{air}}}}}} \right]\ \times \left( { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {NanoDot}\\ {reading} \end{array} } \right)\nonumber \\[3.2pt] && \times \ \left( { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {Calibration}\\ {factor} \end{array} } \right)\end{eqnarray}$$where false(μen/ρfalse)$( {{\mu }_{en}/\rho } )$ is the mass energy absorption coefficient of a specific tissue or substance 20 . To calculate the calibration factor determined using the following formula, in‐air calibration was performed for the 80 kVp beam used in this experiment 18,20–22 Calibration0.33emfactor=()Reference0.33emdosimeter0.33emreading()nanoDot0.33emreading$$\begin{eqnarray} {\rm{Calibration\ factor}} = \frac{{\left( {{\rm{Reference\ dosimeter\ reading}}} \right)}}{{\left( {{\rm{nanoDot\ reading}}} \right)}} \nonumber\\ \end{eqnarray}$$…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Dose to a specific tissue type was determined by using the following formula: Dose0.33emto0.33emtissue0.33emtypei=()μen/ρtissuei()μen/ρair×NanoDotreading×Calibrationfactor$$\begin{eqnarray} {\rm{Dose\ to\ tissue\ type}}\ i &=& \left[ {\frac{{{{\left( {{\mu }_{en}/\rho } \right)}}_{{\rm{tissue}}\ i}}}{{{{\left( {{\mu }_{en}/\rho } \right)}}_{{\rm{air}}}}}} \right]\ \times \left( { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {NanoDot}\\ {reading} \end{array} } \right)\nonumber \\[3.2pt] && \times \ \left( { \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {Calibration}\\ {factor} \end{array} } \right)\end{eqnarray}$$where false(μen/ρfalse)$( {{\mu }_{en}/\rho } )$ is the mass energy absorption coefficient of a specific tissue or substance 20 . To calculate the calibration factor determined using the following formula, in‐air calibration was performed for the 80 kVp beam used in this experiment 18,20–22 Calibration0.33emfactor=()Reference0.33emdosimeter0.33emreading()nanoDot0.33emreading$$\begin{eqnarray} {\rm{Calibration\ factor}} = \frac{{\left( {{\rm{Reference\ dosimeter\ reading}}} \right)}}{{\left( {{\rm{nanoDot\ reading}}} \right)}} \nonumber\\ \end{eqnarray}$$…”
Section: Methodsmentioning
confidence: 99%
“…20 To calculate the calibration factor determined using the following formula, in-air calibration was performed for the 80 kVp beam used in this experiment. 18,[20][21][22] Calibration factor = (Reference dosimeter reading) (nanoDot reading)…”
Section: Experiments 1: Standard Protective Clothingmentioning
confidence: 99%