An accurate coupled field piezoelectric beam finite element formulation is presented. The formulation is based on First-order Shear Deformation Theory (FSDT) with layerwise electric potential. An appropriate through-thickness electric potential distribution is derived using electrostatic equilibrium equations, unlike conventional FSDT based formulations which use assumed independent layerwise linear potential distribution. The derived quadratic potential consists of a coupled term which takes care of induced potential and the associated change in stiffness, without bringing in any additional electrical degrees of freedom. It is shown that the effects of induced potential are significant when piezoelectric material dominates the structure configuration. The accurate results as predicted by a refined 2D simulation are achieved with only single layer modeling of piezolayer by present formulation. It is shown that the conventional formulations require sublayers in modeling, to reproduce the results of similar accuracy. Sublayers add additional degrees of freedom in the conventional formulations and hence increase computational cost. The accuracy of the present formulation has been verified by comparing results obtained from numerical simulation of test problems with those obtained by conventional formulations with sublayers and ANSYS 2D simulations.