Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the current era when access to space is becoming easier and at a lower cost thanks to the standardised cubesat technology, numerous missions are expected to be launched to observe, particularly, at ultraviolet wavelengths. Given the reduced dimensions of the telescope that a cubesat can carry, most of these missions will be focused on photometric surveys of a reduced sample of targets of interest, and therefore each mission will define their own photometric bands according to their scientific objectives and orbital constraints. However, in order to provide a coherent view of the ultraviolet sky, the data should be post-processed under a common framework. In 2017, the IAU working group on ultraviolet astronomy identified the need to define such a common framework for the upcoming ultraviolet missions, and coordinated the definition of a standard set of photometric bands that could serve for homogenizing the current and future data. This paper presents the procedure adopted by the working group for the definition of the standard photometric system, that was approved by the IAU during the General Assembly Business Sessions held in August, 2021. The photometric system consists of seven bands, denoted as UV1-UV7, all included in the range 115 - 400 nm. Some of these bands are based on existing filters, while others have been defined as theoretical bands with constant throughput. This system is to be regarded as a set of synthetic bands for post-processing the data of any mission, and an example of its application to the SPARCS cubesat is also included. The photometric bands are publicly available and can be downloaded from https://www.nuva.eu/uv-photometry/.
In the current era when access to space is becoming easier and at a lower cost thanks to the standardised cubesat technology, numerous missions are expected to be launched to observe, particularly, at ultraviolet wavelengths. Given the reduced dimensions of the telescope that a cubesat can carry, most of these missions will be focused on photometric surveys of a reduced sample of targets of interest, and therefore each mission will define their own photometric bands according to their scientific objectives and orbital constraints. However, in order to provide a coherent view of the ultraviolet sky, the data should be post-processed under a common framework. In 2017, the IAU working group on ultraviolet astronomy identified the need to define such a common framework for the upcoming ultraviolet missions, and coordinated the definition of a standard set of photometric bands that could serve for homogenizing the current and future data. This paper presents the procedure adopted by the working group for the definition of the standard photometric system, that was approved by the IAU during the General Assembly Business Sessions held in August, 2021. The photometric system consists of seven bands, denoted as UV1-UV7, all included in the range 115 - 400 nm. Some of these bands are based on existing filters, while others have been defined as theoretical bands with constant throughput. This system is to be regarded as a set of synthetic bands for post-processing the data of any mission, and an example of its application to the SPARCS cubesat is also included. The photometric bands are publicly available and can be downloaded from https://www.nuva.eu/uv-photometry/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.